炭素繊維複合強化集成材の開発

- 接合部に関する要素実験(第1報)* -

柴田直明・橋爪丈夫

国交省の総プロ「木質複合建築構造技術の開発」の一環として、炭素繊維複合強化集成材の接合部に関す る要素実験を実施した。その結果、(1) CFシート積層接着板の面圧強さは従来の仕様でもスギ材よりはる かに大きく、直交シートを追加するとさらに増強された。(2) ラグスクリュー接合部の一面せん断強さにお いても、直交シートの添付効果が認められた。(3) CFシートの積層接着により、集成材の部分横圧縮強さ も大幅に改善された。(4) 全面横圧縮強さでは、CFシートの積層接着効果は認められなかった。 キーワード:木質ハイブリッド、炭素繊維強化、面圧強さ、一面せん断強さ、横圧縮強さ

1 緒言

炭素繊維複合強化集成材の利用に向けては、接 合部の設計に必要となる各種のデータの蓄積が急 務である。

そこで、従来からの試験に引き続き、本実験で は接合部に関する次の4項目を対象として、各種 のデータの収集とその評価を行った¹⁻⁶⁾。

(1) 炭素繊維シート積層接着板の面圧強さ

(2) 炭素繊維補強集成材の鋼板添板ラグスクリュ ー接合部における一面せん断強さ (3) 炭素繊維補強集成材の部分横圧縮強さ

(4) 炭素繊維補強集成材の全面横圧縮強さ

これらの試験の中では、CFの配向を直交させ たシートの添付効果も検討した。

以下,本報では上記(1)~(4)を次ページ以降の 2~5に記す。これらにおいては,炭素繊維関係 の用語を表 1-1 のように限定して使用する。

また,図・表・写真の番号は2~5別に,参考 文献は最後にまとめて記す。

用 語	用語の内容,製法,性能等
CF	炭素繊維(Carbon Fiber)自体。ここでは,東邦テナックス㈱製ベスファイト HTA-12K を指す。
	本CFの引張強度:4050 N/mm², 引張弾性率:236 kN/mm², 密度:1.77 g/cm³
CFシート	上記のCFをすべて長さ方向に配向させた 300g/m ² のシート状CFに対し、マト リックス樹脂としてリグナイト(㈱製レゾール型フェノール樹脂 AH343/D5 を含浸 させた上で、シートの両面をリグナイト(㈱製フェノール樹脂含浸紙 PFP2A で挟み、 熱圧硬化させて作製した専用のシート単体。 CFシート1枚当りの厚さ:約0.7 mm, CFの体積含有率:約24 %
CFシート	複数枚の上記CFシートを、木材用のレゾルシノール樹脂で積層接着して作製し
積層接着板	た板状のもの
CFRG	CF補強集成材 (Carbon Fiber Reinforced Glulam)。集成材の最外層表面全体 (通常は両面)に、木材用のレゾルシノール樹脂を用い、上記CFシートを任意 の枚数積層接着したもの
NRG	未補強集成材(Non-Reinforced Glulam)

表 1-1 本報におけるCF関係の用語と、その製法・性能等 7-16)

※ 本実験は、国土交通省総合技術開発プロジェクト「木質複合建築構造技術の開発」(略称:木質ハイブリッド総プロ、 1999~2003 年度)における木質システムWG(主査:有馬孝禮氏)の実験の一環として実施された。実際の試験は、幹事 の(独)建築研究所山口修由氏らの指導を受けつつ、従来からの下記メンバー(敬称略)が担当した。

京大名誉教授 石原茂久; 齋藤木材工業 齋藤健,齋藤潔; 東邦テナックス 遠藤善博,高見祐介; アイカ工業 月東秀夫; リグナイト 井出勇,樋口尚登; 長野県林業総合センター 橋爪丈夫,柴田直明 2 CFシート積層接着板の面圧強さ^{1,2,5,6)}

CF強化プラスチックの試験方法としては,JIS K 7080「炭素繊維強化プラスチックの面圧強さ試 験方法」(1991年)[以下,JISと表記]がある。 ただし,本試験に用いるCFシート積層接着板は, つかみ部での固定が難しい。そこで,JISのB法 を基本にして,その応用型を検討した。

次いで,新たな試験方法に基づき,CFシート 積層接着板の面圧強さ試験を実施した。ここでは, CFを長さ方向にのみ配向させた従来のタイプの 他に,表層部に直交方向のCFシートを追加した タイプを作製し,直交シートの効果も検討した。

2.1 試験の方法

2.1.1 試験体

表 1-1 のCFシートを基本単位とし、同表のC Fシート積層接着板を作製した。

試験体の寸法を図 2-1 に,試験体のCFシート 構成を表 2-1 に示す。

試験体 No. 601-608 (コントロール) は,対称異 等級構成集成材 E65-F225 の中間層および内層か ら得られたスギラミナ各1枚ずつから作製した。 すべて板目板とし,原則として晩材部が1層含ま れるように木取りをした。

すべての試験体において, 鋸断には木材用のチ ップソーを用いた。上下の穿孔(図 2-1)には, 直径 8.0 mmの木工用ドリルを使用した。

試験体は20℃,相対湿度65%の恒温恒湿室内で 48時間以上養生(含水率調整等)をした後,同室 内で試験に供した。

2.1.2 試験方法

試験方法を,図 2-1 に示す。

試験体寸法の基準となる試験体 No. 101-106 の 厚さは、従来からの実大材試験体におけるCFシ ート積層厚(約8mm)の1/2,JISの規定厚(2.0mm) の約2倍とした。

また,JIS のつかみ部を省略し,試験体の上下 部に同様の穿孔を行った。試験直前の寸法は,図 2-2 に従って測定した。

ピンには、 \$\phi 8 mm のステンレス製ボルト(ネジ 加工は先端部のみのもの)を使用した。面圧強さ 試験用治具(図 2-1)の内側の間隔は、約8 mm と した。本試験は JIS のB法に準じているため、局 部座屈を防止するカラーは省略した。

試験機にはミネベア㈱製 万能試験機 TCM-5000C(最大荷重 5000 kgf)を使用し,荷重速度 は1mm/分に設定した。

変位計(計3個)には㈱東京測器研究所製 高感 度変位計 CDP-50 を,データロガーには同研究所製 デジタルひずみ測定器 TC-31K (CSW-5A-05 付)を 使用した。

変位計1個は,図2-1のアーム下降量を測定した。残りの変位計2個は,試験体中央部以下の伸びを測定した(写真2-1)。ここでは,試験体中央部の両側に両面テープとクリップでL型金物を固定し,対角線上の2点で変位を測定した。

なお,データロガーへのデータ取り込みは,1 回/秒に設定した。

結果の評価に当っては、まず JIS の B 法に従い、 次式から面圧強さを求めた。

面圧強さ=最大荷重/(ピン径×試験体厚さ)

次いで,「2002 年 枠組壁工法建築物構造計算 指針」(発行:(社)日本ツーバイフォー建築協会) [以下,「指針」と表記]に従い,面材のめり込み の試験剛性と試験終局強度を求めた(図 2-3)。こ れらの算出には,F-BASIC V6.3による自作プログ ラムを使用した。

表 2-1 CFシート積層接着板の層構成(試験体長さ方向に対するCF配向)

試験体 No.	層構成記号	直交(表層)	平行(内層)	直交(表層)	n
101-106	0+6+0	0枚	6枚	0枚	6
201-204	1+6+0	1枚	6枚	0枚	4
301-304	2+6+0	2枚	6枚	0枚	4
401-406	1+6+1	1枚	6枚	1枚	6
501-504	2+6+2	2枚	6枚	2枚	4
601-608	スギ	コントロー	・ル:スギ板目核	汳(6mm厚)	8

図 2-1 本試験における面圧強さの測定方法

図 2-2 試験体の寸法測定位置

2.2 結果と考察

全試験体の荷重-変位曲線を,図 2-4 に示す。 X軸は,荷重開始後のアーム下降量(全変位)とした。

また、試験終了時の代表的な破壊形状を、写真

写真 2-1 試験体周辺の機器配置

2-2 に示す。

試験体 No. 101-106 (層構成 0+6+0) では,荷重 一変位曲線の急な立ち上がりの後,上下の穿孔部 で面圧破壊が徐々に進行し,最終的にはいずれか の穿孔部で長さ方向の割裂を生じた。一般に,最 終的な割裂の直前に,最大荷重をとった。

試験体 No. 201-204 (層構成 1+6+0) では, 同様 の立ち上がりの後, 面圧破壊(直交層のめくれを 含む)が進み, 全変位 7 mm 前後で平行層に割裂が 生じた。最大荷重は,この割裂の直前に示された。 その後, 直交層のめくれ(剥離)がさらに進み, 最終的には一部で平行層のせん断抜けも生じた。

試験体 No. 301-304(層構成 2+6+0)でも,同様 の立ち上がりと面圧破壊を示した。最大荷重は, 全変位 6 mm 前後における直交層の部分的な剥離 の直前に示された。最終的にはいずれかの穿孔部 で平行層のせん断抜けが生じ,荷重値を大きく下 降させた。

試験体 No. 401-406 (層構成 1+6+1) では, 同様 の立ち上がりの後, 面圧破壊(直交層のめくれを 含む)が進行した。ただし,上述の3者と比較し, 初期の立ち上がり後の荷重値の上昇が大きかった。 この間, 直交層のめくれ(剥離)の拡大が徐々に 進み,この段階で最大荷重を示す場合が多かった。 最終的には直交層の剥離が進み,いずれかの穿孔 部で平行層のせん断抜けを生じ,荷重値を大きく 下降させた。なお,一部の平行層には,層間剥離

試験体 No. 501-504 (層構成 2+6+2) でも,初期 立ち上がり後の上昇が大きかった。この間に直交 層の小さな剥離が繰り返されるとともに,平行層 での層間剥離も発生した。最大荷重は,いずれか の小破壊の直前で示された。最終的には,いずれ かの穿孔部において直交層の大きな剥離と平行層 のせん断抜けが発生し,荷重値を大きく下降させ た。

も認められた。

試験体 No. 601-608 (スギ)では、初期の立ち上 がりの後に面圧破壊が進み、この間に最大荷重を 示した。最終的には、いずれかの穿孔部で長さ方 向の割裂を生じ、荷重値を大きく下降させた。な お、スギ試験体の含水率は、全乾法で平均 11. 7%、 標準偏差 0. 31%であった。

試験体の各種データと,JIS のB法による面圧 強さを,表 2-2 および付表 2-1(1)(2)に示す。こ こで,付表の寸法測定位置は図 2-2 によった。ま た,用いたピン(ボルトのネジ切りのない部分) の直径は上下部とも 7.83 mm であった。

面圧強さの算出に当っては,最大荷重を示した

直後の破壊部が明らかな場合(付表 2-1(2))は, その部分の試験体厚さ(付表 2-1(1))を用いた。 破壊部が不明の場合は,平均厚さ(付表 2-1(2)) を用いた。

表 2-2 の最大荷重(y座標の値)で比較すると, その平均値は試験体 No. 101-106 より 201-204, さ らには 301-304 の方が大きかった。しかし, 直交 層を加えた分だけ試験体厚さも増大するので, 面 圧強さの向上はわずかであった。

同様のことは、試験体 No. 401-406 と 501-504 の間でも認められた。

ただし,試験体No. 101-106と401-406の間では, 直交層を付加することの効果が明らかであった。 直交層の厚さは薄くとも,平行層の両側を補強す ることの重要性が示唆されたものと思われる。

なお、本試験では主として試験体 No. 401-406 と 501-504 において、部分的に剥離した直交層が 図 2-1 の面圧強さ試験用治具内側に密着した。よ って、これらの最大荷重値は、摩擦抵抗等によっ て若干大きめに評価された可能性がある。

次に,「指針」の P. 236~237 と P. 257 による「め り込みの試験終局強度」等(図 2-3)を,表 2-3 および付表 2-1(3)に示す。

ここで、本試験法では上下2つの穴でめり込み が生じているため、図2-4の曲線の傾き[「指針」 (図2-3)の直線①に相当する傾き]を2倍にし た値をめり込み試験剛性とした。

めり込み試験終局荷重の欄(表 2-3, 付表 2-1(3))には,「指針」(図 2-3)の直線①と③の 交点の座標を示した。

同表のめり込み試験終局強度の欄には、参考ま でに5%下限値(めり込み終局強度)も表示した。 5%下限値を求める際には、ASTMD 2915の Table 3における信頼水準75%の欄の値を用いた。

表 2-3 の結果も,傾向としては表 2-2 と同様で あった。

なお, 試験体 No. 601-608 のめり込み試験剛性に ついては,図 2-3 の 0. 1Pmax の点が比例限以下と なってしまったため(図 2-4),傾きの値が小さめ に表示された。また,その関係で,めり込み試験 終局強度は表 2-2 の面圧強さよりも大きい値にな った。

- (1)荷重-変位曲線[以下,曲線]上の
 2点(0.1Pmaxと0.4Pmax)を通る
 直線①を引く。
- (2) 曲線上の Pmax の点から,縦軸に平行 な直線②を引く。
- (3) 次式が成り立つように、横軸に平行 な直線③を引き、縦軸との交点の 荷重をPとする。
- ①, ②, ③及び横軸で囲まれる面積 =
 曲線, ②及び横軸で囲まれる面積

図 2-3 「指針」による,面材のめり込みの試験剛性と試験終局強度の求め方

試験剛性 = 直線①の傾き

《注》本試験では横軸を2穴での全変位としたため、得られた傾きを2倍した。 試験終局強度 = 荷重P / (ピン径 × 試験片厚さ)

図 2-4 CFシート積層接着板における層構成別の荷重-変位曲線(曲線の重なりを避け, 左右に分けて表示)

試験体 No.		試験体厚さ	試験体密度	最大荷重時の	面圧強さ
(層構成)		(mm)	(g/cm^3)	座標 x,y(mm,kN)	(N/mm^2)
	平 均	4. 58	1.33	7.38, 7.57	211
101-106	標準偏差	0.022	0.0096	1.00, 0.23	7.2
(0+6+0)	変動係数(%)	0.48	0.72	14 , 3.0	3. 4
	平 均	5.37	1.34	6.83, 9.73	232
201-204	標準偏差	0.018	0.0044	0.39, 0.29	6. 9
(1+6+0)	変動係数(%)	0.33	0.33	5.7, 3.0	3. 0
	平 均	6.01	1.35	6.08, 11.07	236
301-304	標準偏差	0.021	0.0049	0.53, 0.59	13
(2+6+0)	変動係数(%)	0.36	0.36	8.7, 5.3	5.3
-	平 均	6.01	1.35	9.15, 14.22	302
401-406	標準偏差	0.017	0.0087	0.81, 0.48	10
(1+6+1)	変動係数(%)	0.28	0.64	8.8, 3.4	3. 3
	平 均	7.42	1.35	5.65, 18.49	318
501-504	標準偏差	0.032	0.0053	0.27, 0.27	4.3
(2+6+2)	変動係数(%)	0.43	0.40	4.8, 1.4	1.3
	平 均	6.15	0.35	3. 12, 1. 08	22. 5
601-608	標準偏差	0.038	0.036	1.6, 0.091	1. 9
(スギ)	変動係数(%)	0.62	10	53 , 8.4	8.4

表 2-2 CFシート積層接着板の各種データと面圧強さ

表 2-3 「指針」によるCFシート積層接着板のめり込み試験剛性・試験終局強度等

試験体 No.		めり込み試験	めり込み試験終局荷重	めり込み試験
(層構成)		剛性 (kN/mm)	の座標 x,y(mm,kN)	終局強度(N/mm ²)
	平 均	9.99	1.56, 6.55	182
101-106	標準偏差	0.47	0.11, 0.25	7.7
(0+6+0)	変動係数(%)	4.7	7.2, 3.8	4.2
	5%下限值			164
	平 均	11.7	1.92, 8.19	195
201-204	標準偏差	1.0	0.30, 0.29	6.7
(1+6+0)	変動係数(%)	8.7	16 , 3.6	3.4
	5%下限值			177
	平 均	12.5	2.11, 9.63	205
301-304	標準偏差	0.24	0.16, 0.23	5.2
(2+6+0)	変動係数(%)	1.9	7.5, 2.4	2.5
	5%下限值			191
	平 均	13.7	2.22, 11.34	241
401-406	標準偏差	0.17	0.14, 0.46	9.5
(1+6+1)	変動係数(%)	1.2	6.2, 4.0	3.9
	5%下限值			219
	平 均	14.6	2.63, 15.65	269
501-504	標準偏差	0.66	0.27, 0.32	4.0
(2+6+2)	変動係数(%)	4.5	10 , 2.0	1.5
	5%下限值			259
	平 均	1.39	1.76, 1.15	23.8
601-608	標準偏差	0.34	0.65, 0.10	2.2
(スギ)	変動係数(%)-	24	37 , 8.8	9.3
	5%下限值			19.0

試験体 No. 101 (層構成 0+6+0)

試験体 No. 203 (層構成 1+6+0)

試験体 No. 303 (層構成 2+6+0)

試験体 No. 405 (層構成 1+6+1)

試験体 No. 503(層構成 2+6+2)

試験体 No. 601 (スギ)

写真 2-2 試験終了時の代表的な破壊形状

付表 2-1(1) CFシート積層接着板の諸データと面圧強さ試験の結果

試驗休		計	渝休 上部	(mm)			計	論体下部	(mm)	
N-	中国	守司	大中工印	" []]	同	☆ 長	分高	には、「「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」	(uuu) 恒	佰
NO.	八女	八帕		「一」「一」「一」「一」「一」「一」「一」「一」「一」「一」「一」「一」「一」「		NR	八阳	咖木区	門田	/子
(0+6+0)							0.01	00.10	40.00	1 00
101	8.00	8.02	36.22	48.25	4.55	7.99	8.01	36.18	48.22	4.60
102	7.99	8.00	35.62	48.30	4.60	7.98	8.00	36.15	48.29	4.55
103	8.00	7.99	36.30	48.22	4.61	7.99	8.00	36.30	48.25	4.51
104	7.99	7.99	36.57	48.23	4.58	7.99	7.99	36.70	48.08	4.61
105	8,00	7.99	36, 26	48.27	4,64	7,99	8.00	36.16	48.39	4.57
106	8 00	8 00	36 04	48 19	4 54	8 02	8 02	36,60	48.36	4.55
	<u> </u>	8 00	26 17	18 24	1.01	7 00	8 00	36 35	48 27	4 57
干肉	0.00	0.00	30.17	40.24	4.05	0.014	0.00	0.00	0.111	4.01
惊华 偏差	0.005	0.012	0.32	0.039	0.038	0.014	0.010	0.24	0.111	0.037
<u> </u>	0,06	0.15	0.88	0.08	0.82	0.17	0.13	0.67	0.23	0.80
(1+6+0)										
201	7.98	8.00	36.64	48.27	5.42	7.99	7.99	36.72	48.20	5.35
202	7.98	7.98	36.53	48.19	5.37	7.97	7.99	36.29	48.35	5.36
203	7.99	7.98	36.50	48.31	5.38	7.97	7.98	36.57	48.19	5.38
204	7.98	7.97	36, 09	48, 46	5.34	7,97	7,97	36.29	48.33	5.35
亚齿	7 98	7 98	36 44	48 31	5 38	7 98	7 98	36 47	48 27	5 36
酒淮 佢兰	0 005	0 013	0 2/1	0 113	0.033	0 010	0 010	0 214	0 084	0 014
际牛佣 <u></u> 亦動反数(1)	0.000	0.015	0.241	0.113	0.033	0.010	0.010	0.214	0.004	0.014
変則济致(%)	0.06	0.16	0.00	0.23	0.01	0.13	0.12	0. 59	0.17	0.20
(2+6+0)	ALL DALLAS			1084/941 08275 m	an eeraali					(a) (a) (b)
301	7.98	7.97	35.95	48.28	5.99	7.97	7.98	36.18	48.30	6.01
302	7.98	7.98	36.37	48.35	5.98	7.98	7.98	36.12	48.21	5.99
303	7.98	7.96	36.21	48.16	6.09	7.97	7.97	36.27	48.18	5.98
304	7.97	7.96	36.51	48.12	6.03	7.97	7.97	36.73	48.21	6.00
平 均	7,98	7,97	36, 26	48, 23	6.02	7,97	7, 98	36, 33	48, 23	6,00
尰淮 偏差	0 005	0 010	0 240	0 106	0 050	0 005	0 006	0 277	0 052	0 013
亦動反粉 (%)	0.000	0.010	0.66	0.100	0.000	0.00	0.000	0.76	0 11	0.22
<u> </u>	0.00	0.12	0,00	0.22	0.03	0.00	0.07	0.70	0.11	0.22
(1+0+1)				10.00				00 0 -	10.01	
401	7.96	7.97	35.95	48.30	6.01	7.96	7.96	36.25	48.34	6.01
402	7.95	7.98	36.10	48.31	6.00	7.99	7.97	36.19	48.10	5.99
403	7.98	8.00	36.00	48.49	5.98	7.97	7.99	36.08	48.15	6.00
404	7.98	7.98	36.15	48.38	6.04	8.00	7.98	36.08	48.10	6.02
405	8.03	8.04	35.95	48.27	6.07	8.01	8.04	36.08	48.23	5.99
406	8,00	8,00	36, 48	48, 35	6,04	8,01	8.01	36, 28	48.25	5,97
平均	7.98	8 00	36 11	48 35	6 02	7 99	7 99	36, 16	48 20	6.00
梗淮 偏美	0 029	0 025	0 201	0 079	0 033	0 021	0 029	0 092	0 095	0 018
亦動反粉 (火)	0.025	0.020	0.201	0.015	0.54	0.021	0.025	0.002	0.000	0.010
<u> </u>	0.30	0.31	0.00	0.10	0.04	0.20	0.51	0.20	0.20	0.29
(2+6+2)										
501	7.96	7.95	36.47	48.30	7.48	7.95	7.95	36.18	48.28	7.42
502	7.95	7.95	36.18 .	48.55	7.38	7.97	7.95	36.19	48.29	7.38
503	7.95	7.96	36.20	48.36	7.41	7.96	7.95	36.14	48.22	7.41
504	7.95	7.96	36.17	48.34	7.40	7.95	7.96	36.28	48.27	7.48
平 均	7.95	7.96	36.26	48.39	7.42	7.96	7.95	36.20	48.27	7.42
標準偏差	0.005	0.006	0.144	0.111	0.043	0.010	0.005	0.059	0.031	0.042
変動係数(%)	0.06	0.07	0.40	0.23	0.59	0.12	0.06	0.16	0.06	0.56
(7生)	01.00	01 01	01 10	0.00	0.00	0.10	01.00	0110	01.00	
601	0 01	0 00	25 05	10 00	6 00	0 05	7 06	25 07	10 10	6 00
601	0.01	0.00	35.95	48.03	0.09	8.05	7.90	35.91	40.10	0.09
602	8.07	7.96	36.04	47.96	6.19	8.00	7.95	36.00	47.89	6.12
603	8.04	8.01	35.81	48.18	6.18	8.07	8.00	36.00	48.17	6.09
604	8.04	7.99	35.94	47.90	6.15	8.11	8.03	35.93	48.19	6.05
605	8.02	7.96	36.15	48.21	6.13	8.02	7.98	36.02	48.02	6.15
606	8.00	7.98	36.30	47.98	6.18	8.01	8.04	35.97	48.06	6.18
607	8.00	7.98	36.13	48.06	6.18	8.02	7.97	36.23	48.17	6.18
608	8, 14	8,00	35, 99	48,07	6, 19	8, 03	7.98	36.01	48.09	6,20
平均	8 04	7 99	36 04	48 05	6 16	8 04	7 99	36.02	48.09	6 13
桓淮 偏羊	0 047	0 010	0 152	0 106	0 036	0.036	0 032	0 001	0 000	0 053
亦動 医粉 (%)	0 58	0.013	0 42	0.20	0.59	0.000	0.002	0.25	0 21	0.000
2 3 1 DI 30 (/0)	0.00	0.40	0.44	0.44	0.00	0.40	0.40	0.40	0. 41	0.01

付表 2-1(2) CFシート積層接着板の諸データと面圧強さ試験の結果

全長(mm): 300

ピン直径(mm): 7.83

									JIS K 7	7080による
試験体		上	下平均(mm)		重量	密度	最大荷重時	最大荷重	面圧強さ
No.	穴長	穴幅	端末長	幅	厚	(g)	(g/cm^3)	破壞部	(kN)	(N/mm^2)
(0+6+0)										
101	8.00	8.02	36.20	48.24	4.58	87.94	1.34	下:割裂	7.245	201
102	7.99	8.00	35.89	48.30	4.58	86.59	1.32	上:割裂	7.421	206
103	8.00	8.00	36.30	48.24	4.56	86.60	1.32	上:割裂	7.538	209
104	7.99	7.99	36.64	48.16	4.60	86.91	1.32	下:割裂	7.662	212
105	8.00	8.00	36.21	48.33	4.61	88.03	1.33	下:割裂	7.633	213
106	8.01	8.01	36.32	48.28	4.55	87.43	1.34	上:割裂	7.906	222
平均	8.00	8.00	36.26	48.25	4.58	87.25	1.33		7.57	211
標準偏差	0.008	0.010	0.24	0.061	0.022	0.65	0.0096		0.23	7.2
<u> 変動係数(%)</u>	0.10	0.12	0.67	0.13	0.48	0.74	0.72		3.0	3.4
(1+6+0)										
201	7.99	8.00	36.68	48.24	5.39	104.03	1.34	卜:割裂?	9.579	229
202	7.98	7.99	36.41	48.27	5.37	102.98	1.33	卜:割裂?	9.393	224
203	7.98	7.98	36.54	48.25	5.38	103.60	1.34	下:割殺?	10.004	237
204	7.98	7.97	36.19	48.40	5.35	102.92	1.34	上:割殺?	9.948	238
半均	7.98	7.98	36.45	48.29	5.37	103.38	1.34		9.73	232
標準偏差	0.005	0.010	0.208	0.073	0.018	0.53	0.0044		0.29	6.9
<u> </u>	0.06	0.13	0.57	0.15	0.33	0.51	0.33		3.0	3.0
(2+6+0)	7 00		00.07	40.00	0.00	115 75	1 04	L Nkr.	10 000	000
301	7.98	7.98	36.07	48.29	6.00	115.75	1.34	上・せん町	10.623	226
302	7.98	7.98	36.25	48.28	5.99	116.43	1.35	「「せん町	10.506	224
303	7.98	7.97	36.24	48.17	6.04	116.86	1.35	下・せん町	11.639	249
<u> </u>	7.97	7.97	30.02	48.17	6.02	116.31	1.30	下・セル例	11.017	240
平 均 插准信主	1.98	1.91	30.29	48.23	0.01	110.34	1.35		0.50	230
际毕师定 亦動反粉(1)	0.004	0.007	0.234	0.008	0.021	0.40	0.0049		0.09	13
<u> </u>	0.05	0.09	0.04	0.14	0, 30	0.39	0.30		0.0	0.0
401	7 96	7 07	36 10	18 32	6 01	115 00	1 34	ト下・訓離	13 372	284
402	7 97	7 98	36 15	40.02	6.00	115.30	1.34	トレーン判断	14 494	309
403	7 98	8 00	36 04	48.32	5 99	115.64	1.34	上下: 剥離	14 104	301
404	7 99	7 98	36 12	48 24	6.03	117 30	1.35	下:廿ん断	14 260	303
405	8.02	8.04	36.02	48.25	6.03	117, 11	1.35	上下:剥離	14, 808	314
406	8.01	8.01	36. 38	48.30	6.01	117.56	1.36	上下:剥離	14. 256	303
平均	7.99	7.99	36.13	48.27	6.01	116.48	1.35		14.22	302
標準偏差	0.023	0.027	0.130	0.048	0.017	0.95	0.0087		0.48	10
変動係数(%)	0.28	0.34	0.36	0.10	0.28	0.82	0.64		3.4	3.3
(2+6+2)										
501	7.96	7.95	36.33	48.29	7.45	144.19	1.35	下:せん断	18.427	317
502	7.96	7.95	36.19	48.42	7.38	144.50	1.36	上下:剥離	18.174	315
503	7.96	7.96	36.17	48.29	7.41	143.66	1.35	上下:剥離	18.818	324
504	7.95	7.96	36.23	48.31	7.44	144.29	1.35	下:剥離	18.535	316
平均	7.96	7.95	36.23	48.33	7.42	144.16	1.35		18.49	318
標準偏差	0.004	0.005	0.070	0.063	0.032	0.357	0.0053		0.27	4.3
<u>変動係数(%)</u>	0.05	0.06	0.19	0.13	0.43	0.25	0.40		1.4	1.3
(スギ)										
601	8.03	7.98	35.96	48.07	6.09	28.97	0.33	上下:面圧	1.181	24.8
602	8.04	7.96	36.02	47.93	6.16	26.29	0.30	上下:面圧	0.996	20.7
603	8.06	8.01	35,91	48.18	6.14	28.46	0.32	上下:面圧	1.045	21.8
604	8.08	8.01	35.94	48.05	6.10	28.84	0.33	上下:面上	0.986	20.6
605	8.02	7.97	36.09	48.12	6.14	28.53	0.32		1. 142	23.8
606	8.01	8.01	36.14	48.02	6.18	34.12	0.39	エト・面圧	1.201	24.8
609	8.01	7.98	30.18	48, 12	0.18	35.14	0.40	上下・囲圧	0.980	20.4 22 E
<u></u>	0.09	7.99	30.00	40.08	6.15	33.90	0.38	上下・囲圧	1.142	23.5
半 均 插淮信主	0.04	1.99	30.03	40.07	0.15	30.53	0.35		0.001	10
际中调定 亦乱成粉(1)	0.030	0.020	0.098	0.075	0.030	3. 32	10		8 A	1.9 Q /
又别你奴(70)	0.37	0.20	0.21	0.10	0.02	10.9	10		0,4	0.4

付表 2-1(3) CFシート積層接着板の諸データと面圧強さ試験の結果

				直線①3) 交点座標				
	直線①の	めりこみ	直線①の		めりこみ			めりこみ	めりこみ
	傾き	試験剛性	X軸交点		試験終局	Pmax0	の座標	試験終局	終局強度
試験体	al		XO	Xu	荷重 Yu	XPmax	YPmax	強度 Pu	(5%下限值)
No.	(kN/mm)	(kN/mm)	(mm)	(mm)	(kN)	(mm)	(kN)	(N/mm^2)	(N/mm^2)
(0+6+0)									
101	5.00	10.00	0.33	1.62	6.46	7.96	7.25	179	
102	4, 54	9.08	0, 19	1.54	6.17	8.38	7.42	171	
103	5, 18	10.36	0, 19	1, 42	6, 38	7.69	7.54	177	
104	5,10	10, 20	0.41	1.74	6.76	5.49	7,66	187	信頼水進75%
105	5, 16	10.32	0, 18	1.49	6.74	7.26	7.63	188	n=6Ok=2.336
106	4.99	9, 98	0.17	1.52	6.78	7.50	7, 91	191	
平均	5.00	9,99	0, 25	1, 56	6, 55	7.38	7.57	182	164
檀淮 偏差	0.24	0.47	0 10	0 11	0.25	1.00	0.22	7.7	101
変動係数(%)	4 7	4 7	41	7 2	3.8	14	3.0	4.2	
(1+6+0)	1. 1	1. 1		1.2	0.0		0.0	1. 0	
201	5 57	11 14	0.34	1 70	8 05	6 52	0 58	102	
201	5.30	10 60	0.34	2 36	7 80	7 40	0 30	192	信插★淮750
202	6 45	12.00	0.00	2.30	9 57	6 72	10 00	202	10根小牛(5%,
203	6.02	12.90	0.37	1.70	0.07	6.67	0.05	203	11-400 k-2.001
亚切	5.94	12.04	0.45	1.02	0.20 9.10	6.92	9.90	197	177
一千 均 西淮 佰 主	0.64	11.7	0.51	1.92	0.19	0.83	9.13	195	111
际中 佃 左	0.51	1.0	0.25	0.30	0.29	0.39	0.29	0.7	
<u> </u>	8. (8, (49	10	3.0	5.7	3.0	3.4	
(2+6+0)	C 00	10 10	0.75	0.00	0.00	C 01	10 00	000	
301	6.09	12.18	0.75	2.29	9.39	6.31	10.62	200	
302	6.31	12.62	0.40	1.92	9.58	5.55	10.51	204	16 粮水準75%,
303	6.37	12.74	0.48	2.05	9.95	5.75	11.64	213	n=4のk= 2.681
304	6.29	12.58	0.64	2.17	9,60	6.71	11.52	204	
半均	6.27	12.5	0.57	2.11	9.63	6.08	11.07	205	191
標準偏差	0.12	0.24	0.16	0.16	0.23	0.53	0.59	5.2	
<u> </u>	1.9	1.9	28	7.5	2.4	8.7	5.3	2.5	
(1+6+1)									
401	6.74	13.48	0.52	2.12	10.78	9.40	13.37	229	
402	6.99	13.98	0.54	2.20	11.63	9.60	14.49	248	
403	6.87	13.74	0.58	2.14	10.75	7.56	14.10	229	
404	6.86	13.72	0.78	2.49	11.75	9.60	14.26	249	信頼水準75%,
405	6.93	13.86	0.49	2.15	11.46	9.07	14.81	243	n=6のk= 2.336
406	6.83	13.66	0.54	2.24	11.67	9.66	14.26	248	
平均	6.87	13.7	0.58	2.22	11.34	9.15	14.22	241	219
標準偏差	0.086	0.17	0.10	0.14	0.46	0.81	0.48	9.5	
<u>変動係数(%)</u>	1.2	1.2	18	6.2	4.0	8.8	3.4	3.9	
(2+6+2)		-							
501	7.69	15.38	0.28	2.33	15.74	6.02	18.43	271	
502	6.99	13.98	0.52	2.70	15.26	5.56	18.17	264	信頼水準75%,
503	7.50	15.00	0.43	2.51	15.58	5.37	18.82	269	n=4のk= 2.681
504	7.10	14.20	0.72	2.97	16.02	5.63	18.53	274	
平 均	7.32	14.6	0.49	2.63	15.65	5.65	18.49	269	259
標準偏差	0.33	0.66	0.18	0.27	0.32	0.27	0.27	4.0	
変動係数(%)	4.5	4.5	38	10.4	2.0	4.8	1.5	1.5	
(スギ)									
601	0.674	1.348	0.21	2.04	1,236	2, 92	1, 18	25.9	
602	0.581	1, 162	-0.07	1.90	1, 144	2.04	1.00	23.7	
603	0.587	1, 174	-0.09	1.74	1,079	2. 57	1.04	22.5	
604	0, 426	0, 852	0.00	3.12	1, 330	3.12	0.99	27.8	
605	0, 806	1, 612	-0.05	1 35	1, 129	2 35	1 14	23 5	
606	0, 681	1, 362	-0.05	1.68	1, 180	6.76	1.20	24 4	信頼水淮75%
607	0.916	1, 832	-0.03	1.09	1,023	1.38	0.99	21.1	n=8Ok=2.189
608	0.892	1, 784	-0.03	1, 15	1,052	3.84	1.14	21.7	
平均	0, 695	1.39	-0.01	1.76	1.15	3 12	1.09	23.8	19.0
標進偏差	0, 168	0.34	0.09	0 65	0 10	1 6	0.089	2 2	10. 0
変動係数(%)	24	24	-687	37	8.8	53	8.2	9.3	

「2002年 枠組壁工法建築物 構造計算指針」による 直線①③ 交互座標 3 CFRGの鋼板添板ラグスクリュー接合部に おける一面せん断強さ^{1,3,5,6)}

従来の試験に用いたCFRGでは、スギ対称異 等級構成集成材 E65-F225 の最外層表面に,長さ方 向にのみ配向させたCFシートをそれぞれ積層接 着した。このタイプのCFRGについては、既に 鋼板添板ラグスクリュー接合部の一面せん断試験 も実施済みである。その結果としては、後述の完 全弾塑性近似(3.1.2 の②)において、初期剛性 は明らかに大きくなったものの、降伏(終局)耐 力の改善はあまり大きくなかった^{10.14.16)}。

そこで,今回は従来のCFRGの最外層表面に, さらに直交方向に配向するCFシートを積層接着 した上で,同様の試験を試みた。集成材は前回と 同様のスギ製とし,同一等級構成と対称異等級構 成との比較も行った。

また,コントロールとしてのスギ同一等級構成 集成材については,通常の水平積層の他に,垂直 積層の試験体も作製した。

3.1 試験の方法

3.1.1 試験体

試験体の寸法を,図 3-1 に示す。CFシートの 有無以外は,全試験体とも同様とした。

また,試験体4種の平面図を,模式図として図 3-2の下に示す。

CFRGの基材となる集成材は、断面寸法が 150(b)×300(h)mmのスギ同一等級構成集成材 E65-F255(CFRG-1用)とスギ対称異等級構成 集成材 E65-F225(CFRG-2用)の2種で、各1 体とした。後者は、従来の試験体^{10.14.16)}と同様の 仕様である。これらの最外層表面に、表 1-1 に記 したCFシートをそれぞれ次のように配向させて 積層接着した。

長さ方向 12 枚 (内側, 図 3-1 と図 3-2 下では濃 色表示) + 直交方向 2 枚 (外側, 同 淡色表示)

ここで, CFシートの接着には集成材用のレゾ ルシノール樹脂を用いた。

NRGの内, NRG-aはCFRG-1 と同一の 集成材から作製した(図 3-2)。NRG-bは, 150 mm角のスギ同一等級構成集成材(E65-F255)2体 を2次接着して作製した(図 3-2)。

すべての試験体において,集成材部分の仕上げ 寸法は150(b)×300(h)×336(L)mmとした(図3-1)。 CFRGの鋸断・穿孔には,木材加工用のチップ ソーおよびドリルを用いた。

ラグスクリュー(LS)は、すべて直径 16 mm, 長さ 150 mm のものを用いた。試験体1体当り, 4本×2面=8本を使用した。添板用の鋼板厚さ は、従来の9 mm では若干曲がりが出る危険性があ ったため、すべて 12 mm とした。

3.1.2 試験方法

各試験体は,試験直前に㈱島津製作所製 圧縮試 験機 CCM-2000kNA にセットし, LS1本当り1kN 前後の荷重をかけた状態で,最終的なLSの締め 付けを行った。これにより,鋼板2枚の下面を確 実に平行に取り付けることができた。

次いで、一度解圧した後、引き続いて本試験に 移った(写真 3-1)。

図 3-1 鋼板添板ラグスクリュー接合部の一面せん断試験体

本試験の荷重速度は、3mm/分とした。

鋼板と集成材とのすべり(相対変位)は、㈱東 京測器研究所製高感度変位計 CDP-50 で測定した。 ここで、変位計4個(①~④)は図 3-2 の下の平 面図のようにセットした。変位計受け金物の取付 け位置は、全試験体において、集成材の最外層表 面から 30 mm 内側で、長さ方向の中央とした。

荷重と変位の記録には、㈱東京測器研究所製デ ジタルひずみ測定器 TC-31K (CSW-5A-05 付)を用 いた。データの記録間隔は、1回/秒に設定した。 試験結果の評価は、次の2法によった。

 2.1.2に記載した「指針」の P.255 による,試 験許容応力と試験剛性

②「低層建築物の構造耐力性能評定に関する技術 規程(木質系)(案)」(ビルディングレター 1999 年1月号, P. 59-89)のP. 78による完全弾塑性 近似(図 3-3, F-BASIC V6.3による自作プログ ラムを使用)

この2法は同様の方法であり、①の「試験剛性」 と②の「初期剛性」、①の「試験許容応力」と②の 「元モデルの降伏耐力 Py」とは同一のものである。 ②では「完全弾塑性モデルの降伏耐力 Pu(同一面 積を与える台形の高さ)」[以下,終局耐力 Puと表 記]も求めた。

3.2 結果と考察

すべての試験結果をまとめて,図 3-2 に示す(n =3, X軸は載荷開始後における変位計4個の平 均変位)。また,上記①と②の結果を,表 3-1,図 3-4 および付表 3-1 に示す。

参考までに,前回実施した試験の結果^{10.14.16)}も, 表 3-1 と図 3-4 に示した。前回の試験においても, 集成材とLSの寸法や接合部の仕様は今回と同様 であった。ただし、CFシートによる補強は、長 さ方向の 12 枚ずつであった(直交方向なし)。ま た、鋼板の厚さは9 mm であった。

今回のCFRG-1及びCFRG-2は, 直交方 向のCFシートを2枚ずつ追加したため, より大 きな荷重に耐え得た(図 3-2)。特に, 同一の集成 材から作製したCFRG-1とNRG-aとで比較 すると,試験許容応力と終局耐力 Pu の改善が顕著 であった(表 3-1)。

なお,今回の試験ではすべての試験体において, 長さ方向と直交方向とのCFシート接着層で剥離 が認められた(写真 3-2)。そこで,試験終了後に 集成材部を割裂させ,直交方向のCFシートの剥 離状態とLSの変形状態とを観察した(写真 3-3)。

試験後の検討の結果,直交方向のCFシートが 剥離した原因の一つとして,接着前に実施したC Fシートの研磨不足が推定された。この部分の接 着がより良好であれば,さらに優れた試験許容応 力と終局耐力 Pu を示した可能性も考えられる。

次に、NRG-a,b間では大きな差は認められ なかった(図 3-2,表 3-1)。従って、ラグスクリ ューをねじ込む方向は、接合性能にほとんど影響 しないものと判断される。ただし、NRG-bでは 集成材下部中央付近での木口割れ(写真 3-4)が 認められなかった。このことはNRG-bの特徴で あり、ラミナの積層方向(あるいは、年輪の方向) とLSの方向とが、割れの発生の有無に関係して いる可能性も考えられる。

また, NRG-aとNRG-bの終局耐力Puは, 前回のNRGよりやや小さかった(表 3-1,図 3-4)。 この結果だけから判断すると,対称異等級構成よ り同一等級構成の集成材の方が弱いようにも思わ

201 「旧町」のあい儿生件里	IT THE WILL O .		「風とり計画加末		
試験体の種類	試験体数	試験剛性	試験剛性 試験許容応力		塑性率
(図3-2の下参照)	(体)	(kN/mm)	(kN)	(kN)	
CFRG−1 (同一等級)	3	28.5	37.3	47.4	14.7
CFRG-2 (対称異等級)	3	28.8	35.2	45.5	17.6
NRG-a (同一等級)	3	11.4	22.9	31.6	10.4
NRG-b (同一等級)	3	11.4	20. 9	29.3	11.1
(CFRG)(対称異等級)*	4	19.1	29.5	39.8	11.0
(NRG) (対称異等級)*	5	7.82	26.7	36.2	6.39

表 3-1 「指針」および完全弾塑性近似による,一面せん断強さの評価結果(それぞれの平均値を記す)

※前回実施した試験の結果 10.14.16) による。

れる。ただし、CFRG-1とCFRG-2の結果 では、若干ながら同一等級構成集成材の終局耐力 Puの方が大きかった。従って、NRGの前回(対 称異等級構成)と今回(同一等級構成)の差は集 成材の個体差に起因したものである可能性が大き く、両者の差はあまりないものと推測される。

最後に,試験剛性については,今回の試験体の 方が全般に大きかった。CFRG-1,2では,主 として直交方向のCFシートを追加した効果であ ると考えられる。ただし、NRG-a,bでは荷重 一変位曲線の初期の立上りが急であったため(図 3-2),図 3-3の0.1Pmaxの点が比例限の下限以下 となり,試験剛性が大きめに表示された可能性も ある。この原因としては,軽度に載荷した状態で ラグスクリューを締めたことも関係しているかと 思われる。

集成材:スギ対称異等級構成 E65-F225

写真 3-1 CFRGの一面せん断試験

写真 3-2 直交方向のCFシートの剥離 (試験体の上部で,剥離したシートが折れ曲がっている)

写真 3-3 試験終了後の割裂観察面 (直交方向のCFシートの剥離とLSの変形)

写真 3-4 NRG-aにおける 木口割れ(矢印)の例

図 3-3 完全弾塑性近似による評価方法

《解析の進め方》

- (1) 荷重-変位曲線 [以下,曲線]の0.1Pmaxと0.4Pmaxを通る直線 I を引く。
- (2) 0.4Pmax と 0.9Pmax を通る直線Ⅱを引く。
- (3) 曲線に接するまで直線Ⅱを平行移動し,直線Ⅲとする。
- (4) 直線 I,Ⅲの交点を通り、横軸に平行な直線IVを引く。
 - Py:元モデルの降伏耐力(試験許容応力)
- (5) 原点と,直線Ⅳと曲線の交点を通る直線Ⅴを引く。

直線Vの傾き:初期剛性(試験剛性)

- (6) 曲線の 0.8Pmax を通り、縦軸に平行な直線 VIIを引く。 ここで、上図のように一度 0.8Pmax を下回っても、その後回復して 0.8Pmax 以上の値を取り続けた場合は、最後に 0.8Pmax となった点を使う。
- (7) 次式が成り立つように、横軸に平行な直線VIを引く。

直線V, VI, VI及び横軸で囲まれる面積 = 曲線, 直線VII及び横軸で囲まれる面積

Pu:完全弾塑性モデルの降伏耐力(終局耐力)

また、塑性率は次式から求める。

塑性率 = X0.8 / XV

ここで,X0.8:直線Ⅶと横軸との交点のX座標 XV:直線Vと直線Ⅵとの交点のX座標 いずれも、付表 3-1 に記載

(試験体の種類別に、それぞれの平均値で表示)

(CFRG):前回のCFRGの完全弾塑性近似^{10,14,16)}, (NRG):前回のNRGの完全弾塑性近似^{10,14,16)}

	初期剛性	計	、驗許容応	力	降伏点荷重	£				
試験体	直線V傾き	直線IV,	Vの交点	直線V,	VIの交点	0.8Pmaxの	塑性率	Pmax	の座標	(曲線下の
No.	(kN/mm)	XY (mm)	YY (kN)	XV (mm)	YV (kN)	XO.8 (mm)	μ	XPmax (mm)	YPmax (kN)	面積 S)
CFRG-1	(スギ同一	等級E65-F	(255)							
CF補強 1-1 (211)	28.94	1.399	40.49	1.677	48.53	23.73	14.15	9.60	54.81	1111.0
CF補強 1-2 (212)	26.09	1.533	40.02	1.800	46.97	24.60	13.66	8.90	54.18	1112.9
CF補強 1-3 (213)	30.58	1.025	31.35	1.526	46.67	24.65	16.15	7.60	52.94	1114.7
平 均	28.54	1.319	37.29	1.668	47.39	24.33	14.65	8.70	53.98	1112.9
同(3桁)	28.5	1.32	37.3	1.67	47.4	24.3	14.7	8.70	54.0	
			a New York							
CFRG-2	(スギ対称	異等級E65	-F225)							
CF補強 2-1 (221)	31.44	1.038	32.62	1.399	43.98	27.00	19.30	6.63	49.68	1156.6
CF補強 2-2 (222)	25.41	1.373	34.89	1.784	45.33	27.76	15.56	9.73	49.21	1218.2
CF補強 2-3 (223)	29.66	1.280	37.97	1.589	47.12	28.28	17.80	8.29	52.68	1295.0
平 均	28.84	1.230	35.16	1.591	45.48	27.68	17.55	8.22	50.52	1223.3
同(3桁)	28.8	1.23	35.2	1.59	45.5	27.7	17.6	8.22	50.5	
NRG-a	(スギ同一名	等級E65-F	255)							
CFナシ 1-1 (011)	8.59	2.666	22.89	3.663	31.46	29.29	8.00	19.63	34.78	863.8
CFナシ 1-2 (012)	9.90	2.351	23.27	3.243	32.10	29.92	9.23	20.37	35.75	908.6
CFナシ 1-3 (013)	15.58	1.444	22.51	2.013	31.37	28.36	14.09	20.50	34.74	858.1
平 均	11.36	2.154	22.89	2.973	31.64	29.19	10.44	20.17	35.09	876.8
同(3桁)	11.4	2.15	22.9	2.97	31.6	29.2	10.4	20.2	35.1	
NRG-b	(スギ同一等	等級E65-F	255, 2次	接着あり)					
CFナシ 2-1 (021)	10.50	2.084	21.89	2.860	30.05	28.36	9.92	19.25	32.83	809.2
CFナシ 2-2 (022)	11.37	1.913	21.74	2.663	30.27	26.66	10.01	16.80	33.14	766.6
CFナシ 2-3 (023)	12.44	1.536	19.10	2.222	27.63	29.78	13.40	16.17	29.62	792.3
平 均	11.44	1.844	20.91	2.582	29.32	28.27	11.11	17.41	31.86	789.4
同(3桁)	11.4	1.84	20.9	2.58	29.3	28.3	11.1	17.4	31.9	

付表 3-1 一面せん断試験における完全弾塑性近似の諸データ(付表中の記号等は図 3-3 参照)

4 CFRGの部分横圧縮強さ^{1,4,5,6)}

接合部においては,部分横圧縮強さ(めり込み 強さ)も重要である。

そこで,本試験ではCFシート積層接着板の有 無による部分横圧縮強さの相違を検討した。

なお、試験方法は材中間部載荷に限定した。

4.1 試験の方法

4.1.1 試験体

試験体は、CFRG1体から切り出した。この CFRGは、基材となるスギ対称異等級構成集成 材(E65-F225)の断面寸法が150(b)×300(h)mm で、その最外層表面に表1-1に記載したCFシー トを12枚ずつ積層接着したものであった。CFシ ートのCF配向はすべて長さ方向で、12枚積層接 着板の厚さは約8mmであった。

CFRG試験体と鋼製加圧板の寸法を,図 4-1 に示す。この図では,集成材の木口面にのみ,ラ ミナの接着層を記入した。NRG試験体は,CF RG試験体と長さ方向に隣接する部分から同様に 切り出し,CFシート積層接着板の部分のみを切 り落とした。

これらの寸法は,原則として 2.1.2 に記した「指 針」の P.223 に従った。ただし,試験体の長さは, 住宅資材性能規定化対策事業地域材性能評価事 業・報告書「構造用木材の強度試験法」((財)日本 住宅・木材技術センター,2000 年 3 月) に従い, 試験体高さ(ここではNRGの 50 mm を基準とし た)の6倍とした。また,加圧板の下端には,半 径 3 mm の丸みを付けた(図 4-1)。

なお、すべての試験体は、図中にも記したよう

に,試験体の長さ方向の中央100mm部分が無節と なるように切り出した。また,これらの加工はす べて木工用のチップソーで行った。

4.1.2 試験方法

試験の方法は2.1.2に記載した「指針」に従い, 試験体の長さ方向の中央部に加圧板を載せて載荷 した。この際,加圧板はCFRGではCFシート 積層接着板のある側に,NRGでは同積層接着板 のあった側に当てがった。

試験は㈱島津製作所製 圧縮試験機 CCM-2000kNAを用い,荷重速度2mm/分で実施した。

変位の測定には㈱東京測器研究所製 高感度変 位計 CDP-50 を1個使用し,荷重と変位のデータは 同所製デジタルひずみ測定器 TC-31K (CSW-5A-05 付)に記録させた。データの取り込みは, 1回/ 秒に設定した。

試験の状況を,写真4-1に示す。

試験の結果は、「指針」に従い、めり込み試験強度で評価した。めり込み試験強度は、試験体の圧縮量が加力方向の材寸法の5%(ここでは 50 mm×0.05=2.50 mm)に達した時の荷重値を、試験体における荷重の作用面積で除して求めた。

4.2 結果と考察

すべての試験結果をまとめて,図 4-2 に示す(n = 5)。

NRGでは、加圧板が1mm程度めり込むと、試験体の長さ方向における加圧板の端部で、木部の破断が生じた。以後、めり込みと破断を繰り返し、加圧板の下の木部のみが徐々に圧密化状態になっていった。

中央100mmが無節の部分を使用

図 4-1 CFRG試験体と加圧板の寸法

写真 4-1 CFRGの部分横圧縮試験(材中間部載荷)

NRGでは、1 例を除き、木口割れは発生しな かった(写真 4-2)。

CFRGでは、荷重-変位曲線の最初の立ち上 がり部における直線部分の長さがNRGの2倍程 度あり、30 kN 前後で最初の極大値を取った。こ の前後では、CFシート積層接着板の変形に伴い、 主として同積層接着板内における局所的な層間剥 離が認められた。

次いで、変位が5~10 mm の間に、すべてのC FRGの両木口において、木口割れが発生した(写 真4-1,4-3)。この割れは、すべてがラミナの接着 層付近から生じた。その後は加圧板下の木部が圧 密化されるのみで、NRGの荷重-変位曲線と大 差ない状態になった。

なお、すべてのCFRGにおいて、CFシート

積層接着板と木材との接着層は最後まで剥離しな かった。従って,試験体が十分に長く,木口割れ が生じない場合には,CFRGの荷重-変位曲線 の方が常に上位に来る可能性もあると思われる。

最後に,試験体の諸データと「指針」によるめ り込み試験強度を,表4-1および付表4-1に示す。

ここで, 試験体の長さ方向における加圧板の寸 法は, 50.10 mm であった。

CFRGの密度が大きいのは、CFシート積層 接着板を含めた全重量を全体積で除して求めたた めである。

「指針」によるめり込み試験強度は、CFRG の方がNRGの約2倍になっていた。

なお,試験体に隣接する部分から採取した集成 材の含水率は,全乾法で平均13.4%であった。

図 4-2 部分横圧縮試験(材中間部載荷)における荷重-変位曲線

表 4-1 試験体の諸データと、「指針」によるめり込み試験強度(n=5)

試験体		試驗	食体寸法(mm)		密度	変位 2.5 mm	めり込み試験
の種類		幅	髙	長	(g/cm^3)	の荷重(kN)	強度(N/mm ²)
	平 均	50.29	58.06	300	0. 529	29.2	11.6
CFRG	標準偏差	0.17	0.12		0.022	2.3	0.95
	変動係数(%)	0.34	0.21		4.2	7.9	8.2
	平 均	50.32	49.00	300	0.391	15.3	6.05
N R G	標準偏差	0.05	0.14		0.019	0.83	0.33
	変動係数(%)	0.09	0.28		4.8	5.4	5.4

写真 4-2 NRGの試験終了後の形状

写真 4-3 CFRGの試験終了後の形状

付表 4-1 部分横圧縮試験の諸データ(上段:CFRG, 下段:NRG)

加圧板長(mm)=50.10

							変位2.50mm	めり込み試験
試験体No.	幅(mm)	長(mm)	高(mm)	CF板厚(mm)	重量(g)	密度(g/cm ³)	の荷重(kN)	強度(N/mm ²)
131	50.23	300	58.05	8.0	479.94	0.549	29.00	11.52
133	50.57	300	57.89	8.4	455.27	0.518	25.83	10.20
142	50.27	300	58.01	8.5	475.33	0.543	30.72	12.20
231	50.28	300	58.20	8.3	434.98	0.495	31.96	12.69
241	50.11	300	58.14	8.2	472.76	0.541	28.53	11.36
平 均	50.29	300	58.06	8.3	463.66	0.529	29.21	11.59
STDEV	0.17		0.12	0.2	18.55	0.022	2.33	0.95
変動係数(%)	0.34		0.21	2.3	4.0	4.2	7.99	8.15
							変位2.50mm	めり込み試験
試験体No.	幅(mm)	長(mm)	高(mm)	CF板厚(mm)	重量(g)	密度(g/cm ³)	の荷重(kN)	強度(N/mm ²)
132	50.28	300	48.85	-	308.63	0.419	15.28	6.07
141	50.39	300	48.94	-	283.92	0.384	16.03	6.35
143	50.32	300	48.93	_	283.08	0.383	16.03	6.36
232	50.33	300	49.19		274.39	0.369	14.87	5.90
242	50.27	300	49.09		295.38	0.399	14.07	5.59
平均	50.32	300	49.00		289.08	0.391	15.26	6.05
STDEV	0.05		0.14		13.23	0.019	0.83	0.33
変動係数(%)	0.09		0.28		4.6	4.8	5.4	5.4

5 CFRGの全面横圧縮強さ^{1,4,6)}

接合部においては、横圧縮強さも重要である。

そこで,前記「4」との比較のため,ここでは全 面横圧縮強さを検討した。

5.1 試験の方法

5.1.1 試験体

試験体は、4.1.1 と同一のCFRGから、部分 横圧縮試験体と同様の方法で作製した。

CFRGの試験体寸法を,図 5-1 に示す。この 図では,集成材の木口面にのみ接着層を記入した。 NRG試験体は,CFRG試験体と長さ方向に隣 接する部分から同様に切り出し,CFシート積層 接着板の部分(約8mm厚)のみを切り落とした。

なお, すべての試験体は, 全面が無節となるように切り出した。

5.1.2 試験方法

試験機器及び試験条件は,4.1.2と同様にした。 試験の状況を,写真 5-1 に示す。

全面が無節の部分を使用

図 5-1 CFRG試験体の寸法

2.1.2 に記載した「指針」によるめり込み試験 強度は、4.1.2 と同様、試験体の圧縮量が100 mm ×0.05=5.00 mm に達した時の荷重値を、試験体 の断面積(幅×長)で除して求めた。

5.2 結果と考察

すべての試験結果をまとめて,図 5-2 に示す(n = 3)。

全面横圧縮試験では、CFRGとNRGに大差 はなかった。試験体 No. 112 と 113, 122 と 124, 211 と 212 は、それぞれ長さ方向に隣接する部分 から作製したものであった。

なお,試験体 No. 112 のみは木部で大きな割れが 発生し,途中から荷重値が低下した。

試験終了後の試験体形状を,写真5-2に示す。

また,試験体の諸データと「指針」によるめり 込み試験強度を,表 5-1 および付表 5-1 に示す。

試験体に隣接する部分から採取した集成材の含 水率は、全乾法で平均13.4%であった。

写真 5-1 CFRGの全面横圧縮試験

表 5-1	試験体の諸データと,	「指針」	によるめり込み試験強度	(n = 3)
				· · · · · /

試験体		記				変位 5.0 mm	めり込み試験
の種類		幅	高	長	(g/cm^3)	の荷重(kN)	強度(N/mm ²)
CFRG	平 均	50.60	108.12	50.27	0.447	8.50	3. 34
	標準偏差	0.37	0.12	0.08	0.007	1.09	0. 41
	変動係数(%)	0.74	0.11	0.15	1.7	13	12
N R G	平 均	50.55	99. 53	50.08	0.383	8.42	3. 32
	標準偏差	0.31	0.04	0.03	0.004	0.77	0. 28
	変動係数(%)	0.62	0.04	0.06	1.2	9.1	8.5

図 5-2 全面横圧縮試験における荷重-変位曲線 [()内は試験体 No.]

写真 5-2 全面横圧縮試験後の試験体形状(各写真は, 112 と 113, 122 と 124, 211 と 212 の組合せ)

							変位5.00mm	めり込み試験
試験体No.	幅(mm)	長(mm)	高(mm)	CF板厚(mm)	重量(g)	密度(g/cm ³)	の荷重(kN)	強度(N/mm ²)
112	50.69	50.25	108.22	8.3	120.87	0.438	9.01	3.54
122	50.19	50.36	107.99	8.2	123.24	0.452	7.25	2.87
211	50.92	50.21	108.15	8.1	124.79	0.451	9.24	3.61
平 均	50.60	50.27	108.12	8.2	122.97	0.447	8.50	3.34
STDEV	0.37	0.08	0.12	0.1	1.97	0.007	1.09	0.41
変動係数(%)	0.74	0.15	0.11	1.2	1.6	1.7	12.8	12.3
							変位5.00mm	めり込み試験
試験体No.	幅(mm)	長(mm)	高(mm)	CF板厚(mm)	重量(g)	密度(g/cm ³)	の荷重(kN)	強度(N/mm ²)
113	50.68	50.11	99.52		95.41	0.378	8.75	3.45
124	50.19	50.05	99.49	_	96.38	0.386	7.54	3.00
212	50.77	50.08	99.57	_	97.40	0.385	8.97	3.53
平 均	50.55	50.08	99.53		96.40	0.383	8.42	3. 32
STDEV	0.31	0.03	0.04		1.00	0.004	0.77	0.28
変動係数(%)	0.62	0.06	0.04		1.03	1.17	9.14	8.51

付表 5-1 全面横圧縮試験の諸データ(上段:CFRG, 下段:NRG)

引用文献

- 柴田直明,山口修由(2004) CF補強集成材(1) 要素実験,木質複合建築構造技術の開発 平成15 年度報告書構造分科会,国土交通省国土技術政策 総合研究所・独立行政法人建築研究所・財団法人 日本建築センター,530-549
- 柴田直明,橋爪丈夫,遠藤善博,高見祐介,齋藤 健,齋藤潔,井出勇,樋口尚登,月東秀夫,石原 茂久,山口修由(2004.8,札幌) 炭素繊維複合強 化集成材の開発(XXI) CFシート積層接着板の面 圧強さ,日本木材学会大会研究発表要旨集,567
- 3) 柴田直明,橋爪丈夫,齋藤健,齋藤潔,遠藤善博, 高見祐介,井出勇,樋口尚登,月東秀夫,石原茂 久,山口修由(2004.8,札幌) 炭素繊維複合強化 集成材の開発(XXII) 鋼板添板ラグスクリュー接 合部の一面せん断強さ,日本木材学会大会研究発 表要旨集,568
- 4) 柴田直明,橋爪丈夫,齋藤健,齋藤潔,遠藤善博, 高見祐介,井出勇,樋口尚登,月東秀夫,石原茂 久,山口修由(2004.8,札幌) 炭素繊維複合強化 集成材の開発(XXIII)部分横圧縮強さ及び全面横 圧縮強さ,日本木材学会大会研究発表要旨集,569
- 5) 柴田直明,遠藤善博,齋藤潔,橋爪丈夫,山口修 由(2004.8,北海道) 木質複合建築構造技術の開 発 一炭素繊維補強集成材の要素実験-,日本建築 学会大会 学術講演梗概集 C-1 分冊,303-304
- 柴田直明,橋爪丈夫(2004.8) 炭素繊維複合強化 集成材の開発 – 接合部に関する要素実験ー,長野 県林業総合センター 平成 15 年度 業務報告, 112-115
- 7) 遠藤善博,谷口和紀,溝越恵,小川博靖,樋口尚 登,上野加恵,齋藤健,柴田直明,石原茂久(2000.4, 京都) 炭素繊維複合強化集成材の開発(XIII)炭 素繊維複合強化集成材の連続製造システムに関す る検討,日本木材学会大会研究発表要旨集,131
- 8) 月東秀夫,上野加恵,遠藤善博,小川博靖,樋口 尚登,齋藤健,柴田直明,橋爪丈夫,石原茂久 (2000.4,京都) 炭素繊維複合強化集成材の開発 (XIV)炭素繊維硬化シートの接着用樹脂の検討, 日本木材学会大会研究発表要旨集,132
- 9) 柴田直明,橋爪丈夫,月東秀夫,遠藤善博,小川 博靖,樋口尚登,齋藤健,小松幸平,石原茂久 (2000.4,京都) 炭素繊維複合強化集成材の開発 (XV)連続製造炭素繊維硬化シートを用いた実大 試験体の評価,日本木材学会大会研究発表要旨集, 133

- 小川博靖,遠藤善博,齋藤健,齋藤潔,月東秀夫, 井出勇,樋口尚登,小松幸平,柴田直明,橋爪丈 夫,石原茂久(2001.4,東京) 炭素繊維複合強化 集成材の開発(XVI) 一面剪断試験と鋼板添板LS 継手接合部試験,日本木材学会大会研究発表要旨 集,573
- 11)小松幸平,森拓郎,柴田直明,橋爪丈夫,齋藤健, 齋藤潔,小川博靖,遠藤善博,月東秀夫,上野加 恵,井出勇,樋口尚登,石原茂久(2001.4,東京) 炭素繊維複合強化集成材の開発(XVII)柱-梁接合 部の静的正負繰返し加力試験,日本木材学会大会 研究発表要旨集,574
- 12) 遠藤善博,小川博靖,橋爪丈夫,柴田直明,齋藤 潔,石原茂久,小松幸平(2000.9,東北) 炭素繊 維複合強化集成材の開発(II)(その1)炭素繊維複 合強化集成材の連続製造システムに関する検討, 日本建築学会大会 学術講演梗概集 C-1 分冊, 231-232
- 13)橋爪丈夫,柴田直明,小川博靖,遠藤善博,齋藤 潔,小松幸平,石原茂久(2000.9,東北) 炭素繊 維複合強化集成材の開発(Ⅱ)(その2)連続製造 炭素繊維硬化シートを用いた実大試験体の評価, 日本建築学会大会 学術講演梗概集 C-1 分冊, 233-234
- 14)小川博靖,遠藤善博,橋爪丈夫,柴田直明,齋藤 潔,小松幸平,石原茂久(2000.9,東北) 炭素繊 維複合強化集成材の開発(II)(その3)炭素繊維 強化集成材の実大継手試験体に関する曲げ試験, 日本建築学会大会 学術講演梗概集 C-1 分冊, 235-236
- 15) 柴田直明,小松幸平,齋藤潔,小川博靖,遠藤善博,橋爪丈夫,石原茂久(2000.9,東北) 炭素繊維複合強化集成材の開発(II)(その4)柱-梁接合部の静的正負繰返し加力試験,日本建築学会大会学術講演梗概集 C-1分冊,237-238
- 16) 柴田直明,橋爪丈夫(2000.4) 炭素繊維複合強化 集成材の開発 –炭素繊維複合強化集成材の性能 を十分に発現させ得る接合方法の開発–,長野県 林業総合センター 平成11年度業務報告,72-77