木製道路施設の耐久設計・維持管理指針策定のための技術開発

-信州型木製ガードレールの設置初期に認められた劣化・変形等の諸現象と対策-

柴田直明・吉野安里・橋爪丈夫・戸田堅一郎

「防護柵設置基準」に定める車両用防護柵の実車衝突試験(路側用 C 種, 支柱: 土中埋込型)に合格した信州型木製ガードレール 1 ~ 3 号型について、設置初期に認められた劣化・変形等の諸現象を調査し、次の結果及び成果を得た。(1) 材面割れの発生・透明塗装の塗膜剥離等、設置初期の課題を明らかにし、対処可能なものについては標準仕様の変更等に反映させた。(2) 木製横梁の長所として、自動車の接触痕が認められた横梁の内、交換が必要な率は 1 ~ 2 割と小さいことを明らかにした。(3) 横梁の標準仕様や設置環境と木材腐朽菌の子実体発生との関係を検討し、今後は防腐剤の加圧注入を標準仕様とすべく調整を始めた。(4) 現地で簡便に行える非破壊検査手法を検討し、長野県土木部(現 建設部)が中心になってとりまとめた「信州型木製ガードレール維持管理マニュアル」に反映させ、管理者に普及させた。

キーワード:木製ガードレール、横梁、初期劣化、曲げ破壊、維持管理

1 緒言

長野県では2003年度に「信州型木製ガードレール開発事業」を実施し、県内を中心とした民間企業(企業グループを含む)の開発を支援した。その結果、3タイプが「防護柵設置基準」に定める車両用防護柵の実車衝突試験(路側用C種、支柱:土中埋込型)に合格し、信州型木製ガードレール1~3号型として認定された1-7。

2004 年度からは県道等への設置が進み,2008 年度末現在で総延長が20km余りとなっている。

今回,これらの信州型木製ガードレールの設置 初期に認められた劣化・変形等の諸現象を調査し たので、その結果と対策を報告する。

2 設置初期に認められた諸現象と対策 8-24)

2.1 調査の方法

2.1.1 調査対象

調査対象とした信州型木製ガードレール $1\sim3$ 号型(写真-1)について、本施工当初(2004年度の秋 \sim 8)の標準仕様を示す。

1号型 横梁: φ180 mm スギ円柱加工材の半割りを上下に2本,木材保護塗料(水性)塗布,裏面を断面300×3.2 mmの鋼板で補強,その下に鋼管を配置。

支柱: C種用鋼管, スパン 4.0 m

2号型 横梁:カラマツ 150 mm 正角(面取り)を 上下に2本,外部用水性塗料(透明)塗布,各 中央に丸鋼を通して補強。

支柱: C種用鋼管, 地上部をカラマツ 200 mm

写真-1 信州型木製ガードレール (上から1,2,3号型)

正角で被覆, スパン 2.0 m

3号型 横梁: φ180 mm カラマツ円柱加工材 (斜

め下方に背割り)を上下に2本(純木製),木 材保護塗料(油性)塗布。(2004年夏の試験施 工時には,AAC加圧注入+外部用水性塗料 (透明)塗布)

支柱:鉄筋コンクリート柱,スパン 2.0 m なお,1号型の半割り円柱加工材を含め,いずれの木製部材も間伐材を利用しているため,心持ち材であった。

2.1.2 調査方法

目視調査を中心に、主として施工後2年間の経 時変化を観察した。また、何らかの劣化・変形等 の現象が報告された場合には、関係者とともに現 地調査や検討会を実施した。

2.2 結果と考察

施工後約2年間に認められた,横梁木部における劣化・変形等の諸現象とその対策(調査・検討 結果)について,主たるものを以下に報告する。

(1) 材面割れの発生

2号型の横梁では、その製造過程において、ある程度の人工乾燥(高温処理)を実施している。また、3号型の横梁には背割りが入れてある。しかし、 $1 \sim 3$ 号型のすべての横梁において、多くの材面割れが発生した。

間伐材を心持ち材の状態で屋外使用に供する以上, やむを得ない現象かとも思われる。

なお,後述(8)の木材腐朽菌の子実体は,主としてこの材面割れから発生した。

(2) カラマツ材からのヤニの滲出

カラマツ製の横梁では、主として水平樹脂道から材表面へのヤニの滲出が認められた。滲出数は、製造過程に人工乾燥工程を伴わない3号型において、やや多いようであった。

観光客が腰掛けたりする駐車場周辺等の横梁については、ヤニの滲出防止のため、製造段階における蒸煮処理等の追加も今後は検討することにした。

(3) 鋼板の膨れ

1号型の横梁では、一部の路線において、裏面の鋼板(2,320 mm 長)が外側へ膨らみ、木材との間に最大で数 cm 程の隙間が発生する例が散見された(写真-2,ボルト間隔:1,600または1,800 mm)。この膨らみは、主として鋼板同士を固定するボル

トを緩めた段階でほぼ解消された。

1号型の鋼板のボルト穴は、微調整ができるように、横長に加工されていた。木材と鋼材では膨張・収縮が同調しないため、この穴の部分で有効な調整ができるよう、ボルト基部の形状と締め加減を変更した。その結果、同様の膨らみは大幅に減少した。

写真-2 鋼鈑の膨れ (応急処置として 上下にビニールホースが付けてある)

(4) 透明塗装の塗膜剥離等

高原等,日差しの強い所に設置された木製横梁では,設置後半年前後から上部の水平面等で塗膜の劣化(剥離等)が認められるようになった。

現状では低コストの高耐候性透明塗装仕上げは 困難であると思われることから,これらの横梁で は標準仕様を木材保護塗料(油性)の塗布に切り 替えて対応することにした。

なお、木材保護塗料による仕上げ材においても、 一部に軽微な塗装の劣化が認められるようになっ た。塗り替えの必要性の検討も含め、今後とも観 察を続けることにした。

(5) カラマツ透明塗装材における暗黒色の斑点の 発生

設置後半年以内に、暗黒色の斑点が材表面に散在するようになった。この部分を削り取って実体顕微鏡で観察したところ、表面には菌糸状のものや土粒子の付着が認められた。また、一部の裏面には水平樹脂道の存在も確認された。これらの小

片を(独)森林総合研究所へ送付して調査を依頼したところ,カビの可能性が高い,との結論に至った。

この斑点は透明塗装材にのみ認められたものであり、上記(4)によって標準仕様を変更したところ、その後は認められていない。

(6) 乾燥に伴う断面収縮

木製横梁の標準仕様では、一定の許容範囲を示した上で、製造時の断面寸法を規定している。

製造後 $1\sim2$ ヶ月程度で納品している場合には特に問題にならなかったが、半年ほど保管したところ、一部に標準仕様の断面寸法許容範囲以下までの収縮が発生した。

筆者らの別の試験では、未乾燥時に o 120 mm に

仕上げたカラマツ円柱加工材を含水率 13 %程度にまで乾燥させたところ,直径が約 4 mm 収縮した²⁵⁾。よって,納品先とのトラブルを避けるため,標準仕様の記載方法についても検討が必要であると思われる。

(7) 自動車の接触痕と横梁の破損

2008 年度までに自動車の接触痕が認められた 箇所は、既に数十箇所を数えた。この中で、曲げ 破壊が認められた横梁は、目視調査で確認したも の(写真-3)と報告を受けたものを合わせても、 1~2割程度であった。その他はタイヤの接触し た黒い跡等が残っていたのみで、強度性能の観点 からは交換を要しないものと判断された。

今後さらに調査事例を増やす必要はあるが、自

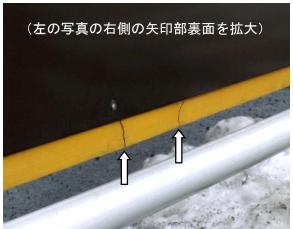


写真-3 木製横梁への自動車の接触痕と、曲げ破壊による亀裂(矢印)

写真-4 木製横梁に観察され始めた子実体

動車が接触しても交換が必要となる横梁は2割以 下であったという今回の結果は、木製ガードレー ルの長所として強調できるものと思われる。

(8) 木材腐朽菌の子実体の発生

設置後2年目から、木材腐朽菌の子実体の発生 が確認されるようになった。これらの子実体の写 真(一部は実物)を(独)森林総合研究所へ送付し て鑑定を依頼したところ,次の5種であった。

- (a) ツノマタタケ, (b) キチリメンタケ,
- (c) キカイガラタケ, (d) スエヒロタケ,
- (e)アラゲカワラタケ

複数の横梁に観察された(a)~(d)を, 写真-4 に 示す。

横梁の仕様別では、1号型、3号型に子実体が 発生し、2号型では子実体の発生は確認されてい ない。2号型はその形状から腐朽しやすい辺材部 が少ないため、子実体の発生が遅れているとも考 えられる。しかし、設置場所の標高等、環境が異 なるため一概に比較することはできない。 今後, 更なる調査の継続が必要である。

なお, 防腐処理を実施した箇所では, 子実体の 発生が極めて少なかった。

3 非破壊検査の可能性^{9,14,26,27)}

3.1 試験の方法

非破壊検査用の機器として、高周波式含水率計 (MOCO-2), ピロディン, デジタルマイクロプロー ブ, ハンディグレーダ (以下, HG), FFTアナ ライザ (以下, FFT), 異音解析装置 (以下, 異 音解析)及びパンジットを試みた。

なお,これらの機器の内, FFT, 異音解析及 びパンジットは(独)森林総合研究所所有のもので あり,同研究所の担当者と共同で測定した。

本報では、主としてHG・FFT・異音解析に よるたわみ振動数と、パンジットによる超音波伝 播時間の測定について報告する。

たわみ振動数の測定では、まず横梁の構造(純 木製または鋼材との複合体)の影響を検討した。

次いで、たわみ振動数の測定が可能な3号型横 梁について、横梁を支柱から取りはずし、支点の 位置とたわみ振動数との関係を調べた(図-1)。ま た,同横梁について,支柱へ取り付けるボルトの 締め付け程度とたわみ振動数との関係を調査した。

ここでは、HG (HG2001) の設定を丸太、2群(t /キ), φ180 mm, 長 1,990 mm, 比重 0.500, FF Tの設定をFREQ 5 kHz, PK FIT とした。

超音波伝播時間の測定でも,まず横梁の構造の 影響を検討した。次いで、超音波伝播時間の測定 が可能な横梁について、測定方向と伝播時間との 関係等を調査した(図-2)。

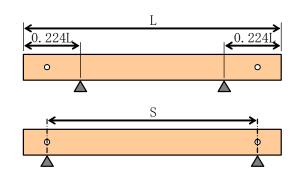


図-1 たわみ振動数の測定方法

上:正規の方法,下:支柱固定部間での測定

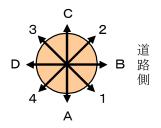


図-2 超音波伝播時間の測定方法 (横梁の断面図)

表-1 支点の位置とたわみ振動数(Hz)*

測定条件	HG	FFT
正規のたわみ振動法 (図1上, L:1,990mm)	756	758
	761	757
	761	757
正規のたわみ振動法	_	757
(図1上, L:1,990mm)	_	757
(支点を紐で吊るす)	_	757
ボルト固定部での	761	756
たわみ振動法	761	756
(図1下, S:1,580mm)	761	756
	1254	1256
縦振動法	1259	1256
	1259	1256

※ 試験体:横梁1本, 測定数:3回

及 2						
	横梁 No. 2-1			横梁 No. 2-2		
固定状態	HG	FFT	異音解析	HG	FFT	異音解析
設置状態のまま	791	794	794	781	781	781
(ナット固定状態)	800		794	791		781
ナットを3回転分	781	780	781	776	770	781
緩める	781	781	781	786	770	781
ナットをはずす	776	770	769	771	768	769
	776	770	769	771	767	769
ナットを手で	810	807	806	791	783	794
きつく締める	815	807	806	795	782	794

表-2 横梁の固定状態とたわみ振動数(Hz)(測定数:原則2回)

3.2 結果と考察

非破壊検査機器として,高周波式含水率計 (MOCO-2),ピロディン及びデジタルマイクロプローブは,信州型木製ガードレール1~3号型のすべての横梁木部に使用可能であった。

(1) たわみ振動数による点検の可能性

横梁を対象としたHG・FFT・異音解析によるたわみ振動数の測定では、純木製の3号型でのみ、安定した結果が得られた。鋼材との複合型となる2号型横梁では、測定値が大きくばらついた(1号型では測定不可)。そこで、3号型の横梁を対象にして、さらに詳細な検討を行った。

主たるたわみ振動数について支点の位置とたわみ振動数との関係を調べたところ、表-1の結果を得た(参考までに、縦振動法の結果も添付)。たわみ振動法では、スパンを正規の寸法にした場合とボルト固定部間とした場合で、振動数に大差はなかった。従って、たわみ振動数の測定は、横梁を支柱に固定したままでも実施可能であると考えられる。

次いで、3号型横梁を支柱に取り付けた状態のままで、固定部のナットの締め具合を変えて測定したところ、表-2の結果を得た。ナットの締め具合によってたわみ振動数が変わるため、一定の強さに締めた上で測定する必要が確認された。

なお、表-1 と表-2 には各測定機器において明確なピークが見られたたわみ振動数を示した。詳細な測定によると1次の振動数は190 Hz 程度で、表中の数値は3次の振動数と思われる。

HG (HG2001) の場合は縦振動数の測定を前提

表-3 木製横梁単独(鋼材なし)の測定結果 ※

号型		密度	含水率	Εf	Εfh	ピロテ・イン
(n)		kg/m^3	%	kN/mm^2	kN/mm^2	mm
	最大	699	51.5	11.04	_	24
1	平均	479	31.3	7. 93	_	20
(16)	最小	378	19.2	5. 57	_	16
	最大	642	34. 7	14.61	14. 13	17
2	平均	564	22. 2	11.84	10. 92	14
(22)	最小	452	11.3	9.26	8. 14	10
	最大	640	37. 2	14. 32	12. 98	17
3	平均	543	27. 0	11. 35	10. 07	14
(20)	最小	450	23.5	9.11	8.39	11

※ 密度以外は、横梁1本当り3回の測定値の平均。 ただし、1号型のピロディンは6回の平均。 いずれも、当センター構内への設置直前に測定

含水率: MOCO-2 による測定値

Ef:縦振動法による動的ヤング係数

Efh: たわみ振動法による動的ヤング係数 ピロディン: 6J Forest による打ち込み深さ

表-4 超音波伝播時間 **

	横梁断面における測定方向			
	A-C	B-D	1-3	2-4
平均 (μS)	86	86	85	88
変動係数(%)	7. 9	6.2	5.8	8.4

※ 測定数:12 スパン×2 本×3 ヶ所=72 ヶ所

に設計されているため、例えば3号型横梁において190 Hz程度のたわみ振動数を測定したい場合には、HGへの材長の入力値を実寸法の1,990mmから9,990 mmに変更する等の工夫が必要であった。材長を9,900 mmにして測定した例を、表-3に示す。

(2) 超音波伝播時間による点検の可能性

横梁を対象としたパンジットによる超音波伝播時間の測定でも、純木製の3号型でのみ、安定し

表-5 信州型木製ガードレールにおける木製横梁の日常(簡易)点検方法 《原案》

診断方法 診断項目		判 定 ※			
		0	Δ	×	
(1) 目視	車の接触等による破損・変形の 有無	なし (深さ 5 mm以内 の削れのみを含む)	深さ5~10mmの削れ のみあり	折れ・曲りあり。 または,深さ10mm以上の 削れあり	
(2) 目視·触診	劣化による断面欠損の有無 (触診時の剥落を含む)	なし (深さ 5 mm以内 の剥落を含む)	深さ5~10mmの 剥落あり	深さ10mm以上の 剥落あり	
(3) 目視	菌糸・きのこの有無 (触診時の剥落部を含む)	なし	存在の疑いあり	あり	
(4) 目視	シロアリ・アリの存在 (触診時の剥落部を含む)	居ない	居た可能性あり	居る	
(5) 目視	蟻道(土のトンネル)の有無	なし	痕跡のみあり	あり	
(6) 目視	虫穴の有無	なし	あり(9箇所以内)	あり(10箇所以上)	
(7) 打診	内部空隙の有無 (ゴムハンマの打音で判断)	なし	存在の疑いあり	あり	
その他	必要に応じ、塗装の剥落、ヤニ の滲み出し(カラマツ材)等も チェックする				

※ 個々の横梁において、全長の一部にでも該当する部分があれば、「あり」とする。

総合判定

×がある	交換の必要性大(直ちに詳細点検を実施)
×はないが, △がある	交換の必要性中(直ちに詳細点検を実施)
すべて〇	現状では、そのまま使用可能

た結果が得られた(表-4)。複合型となる1・2号型横梁では、測定値が大きくばらついた。

なお,3号型横梁においても材面割れが増える と超音波伝播時間が増大するとともに,バラツキ が大きくなる傾向が見られた。

(3) 「信州型木製ガードレールの維持管理マニュアル」²⁸⁾への反映

上記の結果から、現場の管理者に普及可能な非 破壊検査方法としては、目視・触診・打診やピロ ディンによる調査が適当であると思われた。

そこで,2005年度に長野県土木部(現建設部)が中心になって上記のマニュアルをとりまとめた際に,本研究の成果を提供して,同マニュアルに反映させた。

当時の成果を基に、当面の「目視・触診・打診」 のたたき台として提示した原案 ¹⁴を,表-5 に示す。

4 結言

設置初期に認められた劣化・変形等の諸現象の 内,透明塗装の塗膜剥離等は標準仕様の見直しで, 鋼飯の膨れ等は維持管理方法の見直しで対応でき た。また,木製横梁の長所として,自動車が接触 しても横梁が破損しにくいことを明らかにした。 木製横梁の腐朽と交換時期の判定方法等について は,長野県建設部との技術協力等として,今後も 継続的に調査を進める体制が構築できた。 非破壊検査方法については、目視・触診・打診やピロディンによる測定が現場へ導入しやすいことを明らかにし、長野県土木部(現建設部)が中心になってとりまとめた「信州型木製ガードレールの維持管理マニュアル」に反映させた。また、このマニュアルに沿った調査方法については、道路管理者への講習会や現地での共同調査によって普及させた。

謝辞

本研究は、先端技術を活用した農林水産研究高度化事業「木製道路施設の耐久設計・維持管理指針策定のための技術開発」(2004~2008年度)の一部として実施された。本事業の中核機関は(独)森林総合研究所で、共同機関として宮崎県木材利用技術センター、群馬県林業試験場、和光コンクリート工業㈱及び当センターが参画した。

(独)森林総合研究所の本事業担当者各位には, 現地調査等において指導・協力を得た。子実体の 鑑定に際しては,同研究所 微生物生態研究室の服 部力氏からも協力を得た。

現地調査等に当っては、信州型木製ガードレール1~3号型の開発・施工企業をはじめ、長野県土木部(現建設部)・林務部、各地の建設事務所等の担当者各位にも協力を得た。

関係各位に対し,厚く御礼を申し上げます。

参考文献

- 1) 柴田直明・吉野安里 (2004) 信州型木製ガードレール開発事業 (1) -横梁の静的載荷試験 (曲げ試験) -, 長野県林業総合センター 平成 15 年度 業務報告, 106-109
- 2) 柴田直明・吉野安里(2004) 信州型木製ガードレール開発事業(2) -横梁継手部と支柱の静的載荷試験(引張試験)-,長野県林業総合センター 平成15年度業務報告,110-111
- 3) 柴田直明 (2004) 信州型木製ガードレールの 開発,木材保存, **30**(4), 168-173
- 4) 柴田直明 (2004) 信州型木製ガードレールの 設置始まる,長野県林業総合センター技術情報, No. 118, 4-5
- 5) 柴田直明・吉野安里(2004) 木製ガードレール用部材の各種材料試験,日本木材加工技術協会 第22回 年次大会 講演要旨集,37-38
- 6) 久保田努・戸津勝彦・松葉美晴・柴田直明・佐藤信二・安藤和彦(2004) 木製防護柵の開発および実車衝突試験,土木学会第7回構造物の衝撃問題に関するシンポジウム論文集,153-158
- 7) 柴田直明 (2005) 信州型木製ガードレールの 開発について,長野県林業総合センター技術情報 カラマツ林業研究会特集,No.120,18-21
- 8) 柴田直明・吉野安里(2005) 信州型木製ガードレールの開発,公立林業試験研究機関研究成果選集,No. 2,73-74
- 9) 柴田直明・吉野安里・橋爪丈夫(2005) 木製 道路施設の耐久設計・維持管理指針策定のため の技術開発 -長野県における木製道路施設の 調査-,長野県林業総合センター 平成 16 年度 業務報告,98-101
- 10) 柴田直明 (2005) 間伐材の新たな用途開発の 試み 他材料との複合化による高性能・高付加 価値化事例,第 38 回 林業技術シンポジウム報 告集,29-39
- 11) 柴田直明 (2005) 間伐材の新たな用途開発, 長野県林業総合センター研究成果発表会要旨集, 6
- 12) 柴田直明 (2005) 間伐材の新たな用途開発の 試み 他材料との複合化による高性能・高付加 価値化事例,山林,第 1456 号,32-41
- 13) 柴田直明・吉野安里(2005) 信州型木製ガー

- ドレールの開発,名古屋国際木工機械展ガイドブック,237
- 14) 柴田直明・吉野安里・橋爪丈夫(2006) 木製 道路施設の耐久設計・維持管理指針策定のため の技術開発 -長野県における木製道路施設の 調査(2)-,長野県林業総合センター 平成 17 年度 業務報告,108-111
- 15) 柴田直明 (2006) 他材料との複合化による間 伐材の新用途開発と実用化,森林技術, No. 772, 34-35
- 16) 柴田直明・吉野安里・橋爪丈夫(2006) 信州 型木製ガードレールに認められた設置初期の現 象とその対策,日本木材学会中部支部大会講 演要旨集,16-17
- 17) 柴田直明 (2006) 信州型木製ガードレールの 開発と県道等への設置 一間伐材の利用促進と 景観改善等を目指して一,木材工業,**61**(12), 604-607
- 18) 柴田直明・吉野安里・橋爪丈夫(2007) 木製 道路施設の耐久設計・維持管理指針策定のため の技術開発 -長野県における木製道路施設の 調査(3)-,長野県林業総合センター 平成 18 年度 業務報告,98-101
- 19) 柴田直明 (2007) 信州型木製ガードレールの 開発と県道等への設置 一間伐材の利用促進と 景観改善等を目指してー,サンケイタイムズ (発行:小島工業㈱),平成19年夏季号 (第471号), 4-5
- 20) 柴田直明 (2007) 信州型木製ガードレールの 開発と県道等への設置 -産・学・官の連携が 成功へ-, サンケイタイムズ (発行:小島工業 (株), 平成19年秋季号 (第472号), 2-3
- 21) 柴田直明・吉野安里・橋爪丈夫(2007) 信州 型木製ガードレールに認められた車の接触痕と 子実体,日本木材学会 中部支部大会 講演要旨 集,20-21
- 22) 柴田直明・吉野安里・橋爪丈夫(2008) 木製 道路施設の耐久設計・維持管理指針策定のため の技術開発 -長野県における木製道路施設の 調査(4)-,長野県林業総合センター 平成 19 年度 業務報告,110-111
- 23) 柴田直明(2008) 地域の産学官連携による間 伐材の屋外新用途の開発と普及,日本木材学会

- ウッディエンス・メールマガジン, No.8
- 24) 柴田直明・吉野安里・橋爪丈夫・戸田堅一郎・ 山内仁人(2009) 土木における長野県産材の利 用拡大事例,第4回 木質科学シンポジウム「土 木における木材利用の復興」,50-51
- 25) 柴田直明・吉野安里・伊東嘉文・橋爪丈夫 (2003) 間伐材の利用促進を図るための新たな 仕様基準の開発 -カラマツ円柱加工材の材料 強度の把握(その2)-,長野県林業総合セン ター 平成14年度業務報告,73-74
- 26) 柴田直明・吉野安里・橋爪丈夫・桃原郁夫・ 大村和香子・加藤英雄(2005) 信州型木製ガー ドレール設置初年度における各種調査・測定結 果,日本木材学会大会 研究発表要旨集,139
- 27) 柴田直明・吉野安里・橋爪丈夫・加藤英雄・ 井道裕史・久保島吉貴・長尾博文(2006) 信州 型木製ガードレール横梁の非破壊検査の可能性, 日本木材加工技術協会 第 24 回 年次大会 講演 要旨集, 71-72
- 28) 長野県土木部 (2006) 信州型木製ガードレー ル維持管理マニュアル