5 心去り平割材を利用した高剛性・高強度梁桁材の乾燥及び強度性能

木材部 今井信、吉田孝久、奥原祐司、山口健太

カラマツ及びスギ大径A材丸太の成熟材部から平割材を製材し、乾燥後の形質変化と Efr を測定した。また、平 割材を利用した接着重ね梁Cタイプ及び、構造用集成材を作製し、その曲げ強度試験を実施した。

平割材の縦反りは、乾燥前は木表側に、乾燥後は木裏側に反る傾向が確認され、縦反りの大きさは、カラマツく スギであった。曲がりは、カラマツ、スギとも乾燥後に大きくなっていた。ねじれの方向は、カラマツは、S 旋回、 Z旋回が同程度発生し、スギは、S 旋回が多く発生した。ねじれの平均値は、カラマツ 4.6mm/4m、スギ 1.2mm/4m となり、スギのねじれは、利用上支障の無い程度であった。平割材の Efr 平均値は、カラマツ 15.76kN/mm²、スギ 8.77kN/mm²であった。

平割材を利用した接着重ね梁Cタイプカラマツ7体では、MOE が 13.80kN/mm²~19.26kN/mm²、MOR が、66.8N/mm²~115.1N/mm²と高くなり、Efr と MOR に高い相関があった。スギ 11 体においても、MOE は 8.1~11.6 kN/mm²、MOR は 34.7~64.6 N/mm²と製材品と比較して高い性能を示し、せん断破壊した 4 体を除くと Efr と MOR に高い相関があった。

また、平割材を利用した構造用集成材においては、カラマツでは、対称異等級構成、E170-F495、E150-F435、同 一等級構成、E150-F465、E135-F405 などの、高い等級区分の集成材が作製できた。スギでは、対称異等級構成 E95-F270、同一等級構成 E75-F270 などの強度等級が作製できた。曲げ強度試験では、いずれも各等級区分の基準 値を上回った。

キーワード:大径材、平割材、接着重ね梁、高剛性、高強度、構造用集成材

1 試験の目的

大径A材丸太の外側から製材される平割材は、そのほ とんどが成熟材部であり繊維傾斜が小さいため、ネジレ の発生が心持ち材に比べて小さく、ヤング係数が高いこ とが明らかになっている。

本課題においては、大径A材丸太から「心持ち梁桁 材」、「心去り梁桁材」、「枠組壁工法で利用される 210 材・208 材」を横架材として製材した外周部から木取ら れる平割材の乾燥特性と、これらを利用した接着重ね梁 Cタイプおよび構造用集成材を作製し、その強度特性を 検討した。

2 試験の方法

2.1 試験体

大径A材丸太から「心持ち梁桁材」、「心去り梁桁材」、 「210 材・208 材」をそれぞれ主製品として製材し、そ の外周部から製材される平割材を試験体とした。試験体 の木取り方法の詳細は、「1 供試した大径材の諸元及 び木取り方法と歩止り」に記載している。

図 5-1 に心持ち木取りからの製材を示し、心去り木取りからの製材を図 5-2 に、210 材木取りからの製材を図 5-3 に示す。

2.2 試験体の乾燥

心持ち及び心去り木取りからの製材は、それぞれ主製品の乾燥を先に行うため、桟積みの状態で1か月から3か月間天然乾燥を実施した(写真5-1)。その後、表5-1に示す中温乾燥スケジュールで乾燥した。一方、210材木取りからの製材は、210・208材と同一乾燥機で乾燥した後、1か月から2か月養生した(写真5-2)。

上記の乾燥後、接着重ね梁Cタイプ及び構造用集成材 の作製前に、乾燥後の形質等を測定した。測定項目は、 寸法、重量、縦振動周波数、そり、曲がり、ねじれ、含 水率計含水率等とした。なお、乾燥前(製材直後)の測 定については、乾燥後の測定項目の中で、反り、曲がり、 ねじれ以外を測定した。しかし、カラマツ心持ち木取り の一部(製材寸法 40×125mm)、スギ心持ち木取り製 材の全部においては測定しなかった。

乾燥測定後の平割材の一部を用いて、接着重ね梁Cタ イプ及び構造用集成材を作製し、曲げ強度試験を実施し た。全乾法含水率については、曲げ試験終了後、非破壊 部から含水率試験片を切り出し、全乾法含水率を測定し た。

2.3 試験体の作製及び曲げ試験の方法

2.3.1 接着重ね梁Cタイプの作製

平割材のうち、製材寸法 60×170mm を中心材として、 製材寸法 60×125mm を上下材として使用して、梁せい 240mm、梁はば 105mm の接着重ね梁Cタイプを作製 した(図 5-4、写真 5-3)。

平割材の組み合わせは、中心の平割材 2 枚は同一機 械等級で構成した。また、上下 2 枚も同一機械等級を 組み合わせて作製した。作製は、「信州型接着重ね梁C タイプ」の製造工場である斎藤木材工業ナガト工場で行 った。接着剤はレゾルシノール・フェノール樹脂、塗布 量 325g/m²、圧締圧力 10kg/cm²で作製した。なお、圧 締は、上下からの 1 回のみとして、中心材の接着は、 はみ出し防止の側圧のみとした。

試験体数は、使用できる平割材の枚数で作製できる最 大の数とした。カラマツは7体、スギは11体作製した。

写真5-3 接着重ね梁Cタイプ

表 5-1 半割材の乾燥スケシュール

	蒸気式中温乾燥												
乾球温度	湿球温度	温度差	処理時間	備老									
(°C)	(°C)	(°C)	(h)	1111.75									
80	80	0	8	蒸煮処理									
80	75	5	12										
80	70	10	18										
80	65	15	20	中温乾燥									
80	60	20	24										
80	50	30	180										
0	0	0	2	クーリング									
70	63	7	24	調湿(EMC:10.3%)									
		수타	288	時間									
			12	日間									

写真 5-1 桟積み天然乾燥の実施状況

写真 5-2 210 材木取りからの製材の乾燥

図 5-4 接着重ね梁Cタイプの断面

2.3.2 構造用集成材の作製

構造用集成材は、平割材のうち製材寸法 40×125mm を使用し、製品寸法:梁せい 240mm、梁はば 105mm の構造用集成材を作製した(図 5-5、写真 5-4)。 構造 用集成材のラミナの等級構成は、対称異等級構成と同一 等級構成で作製した。接着剤はレゾルシノール・フェノ ール樹脂、作製は、斎藤木材工業ナガト工場で行った。

試験体数は、使用できる平割材の枚数で作製できる最 大の数とした。カラマツは10体、スギは5体作製した。

図 5-5 構造用集成材の断面

写真 5-4 構造用集成材

2.3.3 曲げ強度試験

接着積層後、縦振動周波数及び T.G.H 法により E_{ob} と G_b を測定し、実大材曲げ試験機 UH-1000Kna (島 津製作所)を用いて曲げ強度試験を行った。支点間距離 3900mm (梁せいの 16.25 倍)、荷重点間距離 1300mm の 3 等分点 4 点荷重方式、載荷速度は 15mm/min で実 施し、荷重を加え始めてから試験体が破壊するまでの時 間は 1 分以上となるように行った。荷重点および支点の 幅はともに 200mm である。曲げ試験の様子を**写真 5-5** に示した。

たわみの計測は、中央部において、全スパンのたわみ と、ヨークを用いてモーメントが一定になる荷重点間の たわみを測定した(写真 5-6)。最大荷重 Fut から曲げ 強さ(Fb)(5-1 式)を求め、また、荷重と全スパンのた わみから「見かけの曲げヤング係数(Em)(5-2 式)」を、 荷重と曲げモーメント一定区間のたわみの関係から「真 の曲げヤング係数(Eb)(5-3 式)」を算出した。

$$F_{b} = \frac{aF_{ult}}{2Z} \qquad (5-1 \ \vec{x})$$

$$E_{m} = \frac{a(3L^{2}-4a^{2})(F_{2}-F_{1})}{48I(w_{2}-w_{1})}$$
(5-2 式)

ここで、 **E**m : せん断変形の影響を含んだ曲げヤング係数(kN/mm²) **a** : 支点から荷重点までの距離 L : 試験スパン

- F₂-F₁:荷重変形曲線の直線部分の荷重の増分。
- F1はFult(最大荷重)の約10%、F2は約40%とする。
- Ⅰ:断面2次モーメント((幅×高さ³)/12)

w2-w1: F2-F1に対応する変形の増分。


```
 ここで、
 E<sub>b</sub>: せん断変形の影響を含まない曲げヤング係数(kN/mm<sup>2</sup>)
 a:支点から荷重点までの距離
 Q:荷重点間内の変位量測定区間の長さ
 F<sub>2</sub>-F<sub>1</sub>:荷重変形曲線の直線部分の荷重の増分。
 F<sub>1</sub>はF<sub>ult</sub>(最大荷重)の約10%、F<sub>2</sub>は約40%とする。
 I:断面2次モーメント((幅×高さ<sup>3</sup>)/12)
 w<sub>2</sub>-w<sub>1</sub>:F<sub>2</sub>-F<sub>1</sub>に対応する変形の増分。
```


写真 5-5 曲げ強度試験の実施状況

全スパン モーメン 写真 5-6 たわみ測定の様子

3 試験の結果

3.1 平割材の乾燥特性

各木取りから製材された平割材について、乾燥前後の 形質を製材寸法別に示した。40×125mm 平割材を表 5-2 に、60×125mm 平割材を表 5-3 に、60×170mm 平割 材を表 5-4 に、60×230mm 平割材を表 5-5 に、 60×320mm 平割材を表 5-6 にそれぞれ示した。

次に、平割材の縦反りの乾燥前後の変化を図 5-6,7 に 示し、平割材の曲がりの乾燥前後の変化を図 5-8,9 に示 した。また、平割材の乾燥後のねじれの方向を図 5-10,11 に示した。

表 5-4 60×170mm 平割材の乾燥前後の形質変化

カラマツ	E	fr	含水率計含水率		縦反り		曲がり		ねじれ	ねじれ	割れ
JJJ 2 9	(kN/r	mm²)	(9	%)	(mm	/4m)	(mm	/4m)	(mm/4m)	(度/4m)	(cm/2面4m)
60×170mm	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥	後	乾燥後
平均値	11.77	14.45	40.3	8.6	4.8	5.8	2.1	4.3	5.4	1.9	0
標準偏差	2.4	2.5	8.7	2.8	2.7	3.2	1.8	3.2	4.3	1.5	0
変動係数(%)	20.6	17.6	21.5	32.0	55.9	54.9	84.2	75.6	80.5	81.1	0
最小値	9.12	11.61	26.5	4	2	1	0	0	0	0	0
最大値	16.05	19.58	57.5	13	11	13	5	11	15	5.4	0
データ数	18	18	18	18	18	18	18	18	18	18	18

7 #	Efr		含水率計含水率		縦反り		曲がり		ねじれ	ねじれ	割れ
A+ (0):170mm	(kN/r	mm²)	(9	6)	(mm	/4m)	(mm	/4m)	(mm/4m)	(度/4m)	(cm/2面4m)
60×170mm	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燉	後	乾燥後
平均値	7.56	8.90	67.4	10.8	8.8	4.5	1.5	4.8	1.1	0.4	0
標準偏差	2.2	2.1	20.7	1.1	4.8	5.4	1.6	6.0	1.6	0.6	0
変動係数(%)	29.4	24.0	30.7	10.2	55.0	119.9	108.9	125.8	141.0	140.9	0
最小値	4.43	5.65	41	9	3	0	0	0	0	0	0
最大値	10.79	11.79	117	13	20	20	4	18	5	1.7	0
データ数	16	15	16	15	16	15	16	15	15	15	15

表 5-2 40×125mm 平割材の乾燥前後の形質変化

+	Efr		含水率計含水率		縦反り		曲がり		ねじれ	ねじれ	割れ
カラマツ	(kN/i	mm²)	(9	%)	(mm	/4m)	(mm	/4m)	(mm/4m)	(度/4m)	(cm/2面4m)
40×125000	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥	後	乾燥後
平均値	13.20	16.40	36.7	8.4	7.0	7.1	2.1	3.8	3.4	1.6	13
標準偏差	2.5	2.8	9.5	2.2	5.8	5.1	1.9	3.0	3.3	1.6	28
変動係数(%)	18.8	16.9	26.0	26.0	81.8	71.6	88.8	79.0	99.5	99.5	218
最小値	8.24	11.45	18	4	0	0	0	0	0	0	0
最大値	18.64	23.36	60.5	15.5	28	25	9	15	11	5.3	112
データ数	74	68	74	68	74	68	74	68	68	68	68

Z ギ Efr		fr	含水率計含水率		縦肌	縦反り		がり	ねじれ	ねじれ	割れ
人十 40×125mm	(kN/r	nm²)	(9	%)	(mm	/4m)	(mm	/4m)	(mm/4m)	(度/4m)	(cm/2面4m)
40×125mm	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥	後	乾燥後
平均値	7.85	8.99	61.3	10.3	10.0	7.0	2.0	4.2	0.7	0.3	(
標準偏差	1.6	1.8	14.3	0.6	6.9	4.7	2.0	4.0	1.2	0.6	(
変動係数(%)	20.5	20.3	23.3	6.0	68.5	66.6	98.4	93.8	169.4	169.5	
最小値	4.45	5.09	40	9.5	0	0	0	0	0	0	(
最大値	11.08	13.29	96.5	11.5	38	17	8	20	4	1.9	(
デーク数	33	33	33	33	33	33	33	33	33	33	31

表 5-5 60×230mm ほか平割材の乾燥前後の形質変化

+=	Efr		含水率計含水率		縦反り		曲がり		ねじれ	ねじれ	割れ
JJ J Z Z Z	(kN/r	nm²)	(%)		(mm/4m)		(mm/4m)		(mm/4m)	(度/4m)	(cm/2面4m)
60×25011111	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥	後	乾燥後
平均值	12.77	15.75	44.3	8.1	5.6	3.6	2.2	3.6	4.6	1.2	73
標準偏差	2.0	2.5	8.4	2.0	2.8	2.6	2.0	3.5	4.4	1.1	87
変動係数(%)	16.0	15.7	18.9	25.1	48.9	70.1	92.9	97.6	95.5	95.6	120
最小値	9.59	11.76	28	3.5	0	0	0	0	0	0.0	0
最大値	17.03	21.14	61.5	12.5	11	9	8	16	15	3.9	302
データ数	34	34	34	34	34	34	34	34	34	34	34

スギ	E	fr	含水率	含水率	縦肌	反り	曲力	がり	ねじれ	ねじれ	割れ
60×240mm	(kN/r	mm²)	(9	%)	(mm	/4m)	(mm	/4m)	(mm/4m)	(度/4m)	(cm/2面4m)
ほか	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥	後	乾燥後
平均値	6.23	7.19	64.6	10.9	9.1	9.7	1.4	6.5	1.5	0.4	0
標準偏差	2.1	2.3	18.4	1.4	9.2	5.4	1.4	6.5	2.6	0.7	0
変動係数(%)	33.8	32.6	28.5	12.9	101.1	55.8	100.3	101.0	174.5	178.0	0
最小値	3.57	4.25	38.5	10	0	3	0	1	0	0	0
最大値	10.81	12.41	104.5	15	39	19	4	26	9	2.4	0
データ数	15	15	15	15	15	15	15	15	15	15	15

表 5-3 60×125mm 平割材の乾燥前後の形質変化

カラマツ	E	fr	含水率計含水率		縦反り		曲がり		ねじれ	ねじれ	割れ
カラマツ	(kN/i	mm²)	(9	%)	(mm	/4m)	(mm	/4m)	(mm/4m)	(度/4m)	(cm/2面4m)
60×125mm	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥	後	乾燥後
平均值	12.90	15.66	34.9	9.6	6.2	7.6	3.6	3.7	3.9	1.9	5
標準偏差	2.1	2.4	5.4	2.9	3.6	4.0	2.3	1.7	4.2	2.0	22
変動係数(%)	16.2	15.2	15.4	30.1	57.8	52.2	63.6	45.9	106.8	106.7	432
最小値	10.47	13.04	22.5	3.5	0	0	0	0	0	0	0
最大値	16.86	20.01	44.5	14.5	12	18	12	8	12	5.7	116
データ数	30	29	30	29	30	29	30	29	29	29	29

スギ	Efr		含水率計含水率		縦反り		曲がり		ねじれ	ねじれ	割れ
A+ (0+125mm	(kN/i	mm²)	(9	%)	(mm	/4m)	(mm	/4m)	(mm/4m)	(度/4m)	(cm/2面4m)
60×12511111	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥	後	乾燥後
平均值	7.50	8.67	64.6	10.4	9.0	6.3	1.3	2.9	1.4	0.6	C
標準偏差	1.4	1.6	19.6	0.4	4.9	5.0	2.3	4.5	2.8	1.3	C
変動係数(%)	18.4	17.9	30.3	4.2	55.1	79.5	178.5	153.0	203.5	202.6	C
最小値	5.05	6.16	23.5	9.5	0	0	0	0	0	0	C
最大値	11.03	12.38	103.5	11.5	23	23	12	27	15	7.0	C
データ数	38	38	38	38	38	38	38	38	38	38	38

表 5-6 60×320mm 平割材の乾燥前後の形質変化

+=	Efr		含水率計含水率		縦周	縦反り		がり	ねじれ	ねじれ	割れ
/JJ/29	(kN/r	mm²)	(9	%)	(mm	/4m)	(mm	/4m)	(mm/4m)	(度/4m)	(cm/2面4m)
60×320mm	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥	後	乾燥後
平均値	10.23	13.02	37.0	5.0	2.2	5.5	1.2	9.2	20.3	3.8	59
標準偏差	1.6	1.8	7.1	0.8	2.5	4.5	1.8	10.9	6.2	1.1	102
変動係数(%)	15.7	13.7	19.1	16.7	114.6	82.7	157.3	119.2	30.6	30.2	173
最小値	7.80	10.32	28.5	4	0	2	0	3	14	2.6	0
最大値	12.82	15.85	46	6	5	14	4	31	32	5.9	261
データ数	6	6	6	6	6	6	6	6	6	6	6

フザ	E	fr	含水率計含水率		縦反り		曲がり		ねじれ	ねじれ	割れ
人十 60×220mm	(kN/i	mm²)	(9	%)	(mm	/4m)	(mm	/4m)	(mm/4m)	(度/4m)	(cm/2面4m)
00×32011111	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燥前	乾燥後	乾燉	後	乾燥後
平均值	-	8.81	-	11.4	-	4.3	-	2.2	1.7	0.3	0
標準偏差	-	1.5	-	1.4	-	3.2	-	2.4	2.4	0.4	0
変動係数(%)	-	16.5	-	12.4	-	74.3	-	108.8	144.1	144.2	0
最小値	-	5.89	-	9.5	-	0	-	0	0	0	0
最大値	-	10.93	-	15.5	-	13	-	8	7	1.3	0
データ数	-	18	-	18	-	18	-	18	18	18	18

図 5-6 平割材の縦反りの変化(カラマツ)

図 5-10 平割材のねじれ (カラマツ)

図 5-11 平割材のねじれ (スギ)

3.2 平割材のEfr

乾燥後の平割材の Efr を、樹種別及び平割材の寸法別 に表 5-7 に示す。また、カラマツの度数分布を図 5-12 に示し、スギのそれを図 5-13 に示す。

なお、乾燥前(製材直後)の計測値がない平割材については、乾燥前後の形質変化の集計からは除いたが、乾燥後の平割材の Efr の分布には含めて集計した。

丸太の Efr とその丸太から製材された平割材の Efr の 関係を図 5-14~17 に示した。大径A材丸太から「心持 ち梁桁材」、「心去り梁桁材」、「210 材・208 材」をそれ ぞれ主製品として製材した外周部から製材した平割材で あるため、総じて丸太 Efr より高い傾向にあった。

					101		
カラマツ	カラマツ平割材Efr(kN/mm ²)						
平割材の種類	40-125	60-125	60-170	60-230	60-320		
平均值	16.23	15.66	14.45	15.75	13.02		
標準偏差	2.72	2.38	2.55	2.47	1.79		
変動係数(%)	16.78	15.20	17.62	15.67	13.71		
最小値	11.45	13.04	11.61	11.76	10.32		
最大値	23.36	20.01	19.58	21.14	15.85		
データ数	93	29	18	34	6		

図 5-13 平割材の Efr (スギ)

図 5-14 丸太の Efr と平割材の Efr の関係 (カラマツ-1)

図 5-16 丸太の Efr と平割材の Efr の関係 (カラマツ-2)

3.3 接着重ね梁Cタイプの強度特性

カラマツ接着重ね梁 7 体の曲げ試験結果の概要を表 5-8 に示した。また、Efr と見かけの MOE の関係を図 5-18 に、Efr と真の MOE の関係を図 5-19 に、Efr と MOR の関係を図 5-20 に示す。

さらに、カラマツ接着重ね梁 7 体の平割材の Efr 及び E 等級、L 等級の組み合わせと重ね梁の Efr、曲げ強さ、見かけ MOE と真の MOE、曲げ試験後の断面写真を図 5-21 に、各試験体の破壊の様子を写真 5-8 示す。

表 5-8 接着重ね梁Cタイプカラマツの曲げ試験結果の概要

試験体No.	曲げ強さ	Efr	全スパンヤング係数	一定スパンヤング係数	含水率計含水率	全乾法含水率	动体形能
	(N/mm ²)	(kN/mm ²)	(kN/mm ²)	(kN/mm ²)	(%)	(%)	吸收化器
1	115.1	19.99	18.12	19.26	14.8	10.8	曲げ
2	101.1	18.53	17.21	18.56	12.5	10.2	曲げ
3	89.5	16.83	16.41	17.08	10.9	9.2	曲げ
4	86.8	15.41	15.03	15.88	11.3	10.3	上部圧縮
5	77.3	15.34	14.31	14.96	10.4	9.2	曲げ
6	72.6	14.53	13.82	14.61	9.3	9.0	曲げ
7	66.8	13.78	13.13	13.80	8.8	9.6	曲げ

図 5-19 カラマツ接着重ね梁Cタイプ の Efr と真の MOE の関係

写真 5-8 接着重ね梁Cタイプカラマツの破壊形態

図 5-21 カラマツ接着重ね梁Cタイプの平割材の組み合わせと曲げ試験結果

次に、スギ接着重ね梁 11 体の曲げ試験結果の概要を 表 5-9 に示す。また、Efr と見かけの MOE の関係を図 5-22 に、Efr と真の MOE の関係を図 5-23 に、Efr と MOR の関係を図 5-24 に示す。

さらに、スギ接着重ね梁 11 体の平割材の Efr 及び E 等級、L 等級の組み合わせと重ね梁の Efr、曲げ強さ、 見かけ MOE と真の MOE、曲げ試験後の断面写真を図 5-25 に示す。

図5-24に示す回帰式は、せん断破壊を除いている。

試験体No. (曲げ強さ	Efr	全スパンヤング係数	一定スパンヤング係数	含水率計含水率	全乾法含水率	动病形能
	(N/mm ²)	(kN/mm ²)	(kN/mm ²)	(kN/mm ²)	(%)	(%)	城城形態
1	64.6	11.91	11.06	11.61	11.9	11.2	曲げ
2	63.6	11.42	10.78	11.58	11.0	9.9	上部圧縮
3	43.3	10.74	10.26	10.72	11.3	9.1	せん断
4	53.5	10.48	9.71	10.54	11.1	9.4	せん断
5	62.1	10.43	9.98	10.43	10.6	9.3	曲げ
6	60.7	9.78	9.49	9.88	11.1	10.0	曲げ
7	58.0	9.63	9.09	9.56	14.3	11.1	せん断
8	52.3	9.28	8.73	9.21	10.4	8.6	曲げ
9	34.7	8.62	7.77	8.11	11.4	10.2	せん断
10	50.1	8.01	8.14	8.39	10.3	8.8	曲げ
11	42.7	7.51	7.82	8.37	9.6	8.5	曲げ

図 5-22 スギ接着重ね梁CタイプのEfr と見かけの MOE の関係

図 5-25 スギ接着重ね梁Cタイプの平割材の組み合わせと曲げ試験結果

3.4 構造用集成材の強度特性

カラマツ構造用集成材 10 体の曲げ試験結果の概要を **表 5-10** に、Efr と MOR の関係を図 5-26 に示す。また、 集成材の構成ラミナの Efr 及び E 等級、L 等級の組み 合わせと集成材の Efr、曲げ強さ、見かけ MOE と真の MOE、曲げ試験後の断面写真を図 5-27 に示す。

表 5-10 構造用集成材カラマツの曲げ試験結果の概要

図 5-27 カラマツ構造用集成材のラミナ構成と曲け試験結果

スギ構造用集成材 5 体の曲げ試験結果の概要を表 5-11 に、Efr と MOR の関係を図 5-28 に示す。また、 集成材の構成ラミナの Efr 及び E 等級、L 等級の組み 合わせと集成材の Efr、曲げ強さ、見かけ MOE と真の MOE、曲げ試験後の断面写真を図 5-29 に示す。

区分	試験体No.	No. 強度等級	曲げ強さ	Efr	全スパンヤング係数	一定スパンヤング係数	含水率計含水率	全乾法含水率	破壊形態	
			(N/mm ²)	(kN/mm ²)	(kN/mm ²)	(kN/mm ²)	(%)	(%)		
対称異等級	1	E95-F270	61.9	10.17	10.71	11.31	10.5	9.5	せん断	
	2	E85-F255	67.0	8.97	9.28	9.78	10.3	9.8	上部圧壊	
同一等級	3	E75-F270	48.7	9.60	8.99	9.55	10.3	9.8	曲げ	
	4	E65-F255	31.5	8.52	7.94	8.20	10.4	9.6	曲げ	
(対称異等級)	5	E85-E300	70.2	11.20	10.42	10.98	10.5	9.5	曲げ	

表 5-11 スギ構造用集成材曲げ試験結果の概要

図 5-29 構造用集成材スギラミナ構成と曲げ試験結果

4 まとめ

課題1の「心持ち木取り」「心去り木取り」「208材・ 210 材木取り」の各木取りの主製品を製材したその外周 部から、Cタイプ接着重ね梁向けの平割材(製材断面寸 法;40×125mm、60×125mm、60×170mm、 60×230mm、60×320mmの5種類)及び高強度集成材 向けのラミナ(製材断面寸法;40×125mm)を製材し た。これらの製材品について乾燥特性を調査した後に 各製品を作製し、その性能評価を行った。その結果、

- (1) 平割材は 80℃12 日間の蒸気式中温乾燥で、カラ マツ及びスギは10%前後の含水率に仕上がった。
- (2) 平割材の縦そりは、乾燥前は木表側に、乾燥後は 木裏側にそる傾向が確認された。
- (3) 縦そりの大きさは、カラマツ<スギであった。
- (4) 曲がりは、カラマツ、スギとも乾燥後に大きくなっていた。
- (5) カラマツのねじれは、S旋回、Z旋回が同程度発 生した。60×230mmの平割材では、Z旋回が多く 発生していた。また、60×320mmの平割材では、 ねじれが大きくなる傾向が確認された。
- (6) スギのねじれは、カラマツに比べて小さく平均
 2mm 以下で利用上支障にはならない程度であった。
 また、S旋回も多く発生していた。
- (7) カラマツ平割材の Efr は、乾燥前後で約 1.2 倍強 高くなった。また、乾燥後の Efr の平均値は、 40×125mm で 16.23kN/mm²、60×125mm で 15.66kN/mm²、60×170mm で 14.45kN/mm²、 60×230mm で 15.75kN/mm²、60×320mm で 13.02kN/mm²であった。
- (8) スギ平割材の Efr は、乾燥前後で約 1.1 倍強高くなった。また、乾燥後の Efr の平均値は、40×125mm で 9.16kN/mm²、60×125mm で 8.79kN/mm²、60×170mm で 8.80kN/mm²、60×230mm で 7.19kN/mm²、60×320mm で 8.81kN/mm²であった。
- (9) 接着重ね梁 C タイプカラマツ 7 体の曲げ試験の結
 果では、Efr の高い平割材を組み合わせることによって、MOE が 13.80kN/mm²~19.26kN/mm²、
 MOR が、66.8N/mm²~115.1N/mm²と高くなった。
- (10) Efr と見かけのヤング係数、Efr と真のヤング
 係数に高い相関が確認され、Efr と MOR にも高い
 相関があった。
- (11) 接着重ね梁 C タイプスギ 11 体の曲げ試験の結果では、MOE が 8.11kN/mm²~11.61kN/mm²、MOR が、34.7N/mm²~64.6N/mm²となった。

- (12) Efr と見かけのヤング係数、Efr と真のヤング係数に高い相関が確認された。また、せん断破壊した4体を除くとEfr と MOR にも高い相関があった。
- (12)構造用集成材カラマツは、対称異等級構成集成 材3体、同一等級構成集成材7体合計10体を作製 した。
- (13)対称異等級構成集成材3体の強度等級は、E170-F495を1体、E150-F435を2体を作製し、同一
 等級構成集成材の強度等級は、E150-F465を2体、
 E135-F405を4体、E120-F375を1体作製した。
- (14)支点と荷重点間の距離を十分確保できなったため、6体がせん断で破壊したが、全ての試験体で基準値を上回った。
- (15)構造用集成材スギは、対称異等級構成集成材3体、同一等級構成集成材2体合計5体を作製した。
- (16)対称異等級構成集成材3体の強度等級は、E95-F270、E85-F255、E85-F300、各体を作製し、同一
 等級構成集成材の強度等級は、E75-F270、E65-F255、各1体を作製した。
- (17)支点と荷重点間の距離を十分確保できなったため、1体がせん断で破壊したが、全ての試験体で基準値を上回った。